
Phase-Aligned Foveated Rendering for Virtual Reality Headsets
Eric Turner* Haomiao Jiang Damien Saint-Macary Behnam Bastani

Google Inc.

ABSTRACT

We propose a novel method of foveated rendering for virtual reality,
targeting head-mounted displays with large fields of view or high
pixel densities. Our foveation method removes motion-induced
flicker in the periphery by aligning the rendered pixel grid to the
virtual scene content during rasterization and upsampling. This
method dramatically reduces detectability of motion artifacts in the
periphery without complex interpolation or anti-aliasing algorithms.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities

1 INTRODUCTION

Immersive VR is trending towards wider fields of view and greater
pixel densities. As head-mounted displays move closer to these im-
pressive specifications, the total number of pixels required becomes
enormous. The motivation of foveated rendering in VR is to drive
displays of these sizes without performing the full render stack on
each pixel [4, 7]. Full-resolution content is rendered at the center of
the screen or, if eyetracking is available, at the current gaze. The
periphery is generated at a sparse resolution, which is then inter-
polated or back-filled [3, 4, 10]. Computation is saved each frame
by reducing the number of pixels calculated by fragment shaders.
The amount of foveation must become more aggressive as headsets
become more advanced and more immersive. Any existing aliasing
or flickering artifacts become more apparent to a user, requiring
additional post-processing.

In this paper, we propose foveated rendering that reduces de-
tectability of aliasing in the periphery. Rather than applying complex
filtering after rendering, we instead rely on proper angular alignment
of the render frustums to minimize frame-to-frame flicker artifacts.
Although static aliasing artifacts within each frame are still present,
temporal aliasing is greatly reduced. We have found that the tempo-
ral flickering is the larger cause of detectability of foveated rendering
and its removal allows for more aggressive foveation [5]. Phase-
alignment can be performed alongside any upsampling technique.
More simplistic upsampling methods, such as nearest neighbor,
become viable since their substantial aliasing artifacts are less per-
ceptible in the periphery by not contributing to dynamic flicker under
motion [5]. Phase-alignment allows for computationally simpler
interpolation techniques that preserve local contrast.

2 PHASE-ALIGNMENT METHOD

Under traditional foveation, both the low-acuity and high-acuity
regions are updated with head-tracking information [1, 8]. The low-
acuity regions are rasterized and upsampled in the latest display
coordinate frame, shown in Fig. 1a. Any aliasing artifacts due to
upsampling are aligned to display coordinates. Since the display
moves in relation to the virtual world content, aliasing artifacts move
as well, causing perceivable flickering from frame to frame. The

*email:elturner@google.com

(a)

(b)

Figure 1: (a) Traditional foveation with the high-acuity region (green)
and wider low-acuity region (orange) rendered aligned to head co-
ordinates; (b) Phase-aligned foveation with the high-acuity region
(green) rendered in the display coordinates and low-acuity regions
(red, orange, purple, brown) rotationally fixed to world coordinates
during rendering.

low-acuity pixels are always upsampled at the same phase-offset on
the display, regardless of head rotation, shown by red squares at the
top of each image. These squares showcase how each pixel changes
as the user rotates, causing the pixel color to shift and flicker.

In phase-aligned foveated rendering, we enforce low-acuity re-
gions to be rotationally world-aligned, which are then reprojected
and resampled onto the final display surface. The phase offset
between the low-acuity pixels and the native-resolution pixels is
dynamic from frame-to-frame, ensuring each low-acuity pixel is
aligned with the virtual world rather than the display.

Fig. 1b shows our phase-aligned method. The high-acuity region
matches the rotational movement of the head, but the low-acuity
regions are rotationally fixed to world coordinates. Multiple low-
acuity regions are now necessary. As one low-acuity region moves
out of the display frame, another fills the area. The low-acuity
pixels, shown as squares at the top of the rendering, are always
phase-aligned with the world content rather than the display. As a
result, no flickering artifacts are introduced due to head rotation.

3 IMPLEMENTATION AND RESULTS

In a 3D system, a total of six low-acuity regions are allocated to
cover all faces of a cube, but only a subset are needed each frame.
As shown in Fig. 2, prior to rendering we compute which regions
are visible at the display’s current orientation. Typically only two



Figure 2: Six Low-Acuity (LA) regions and one High-Acuity (HA)
regions are preallocated per eye. Only a subset are selected each
frame (colored in blue). Each selected viewing frustum is computed
(dashed outline) and its content is rendered to the subimage that is
visible on the final display (solid outline). The result is reprojected and
upsampled into the final image for each eye.

or three low-acuity regions are used on any given frame, depending
on the output field of view of the headset. Fig. 2 shows an example
frame using two low-acuity regions. For each surface used, we
find the portion overlapping the output display and only render
to that area. The remaining area is masked out via depth-culling,
short-circuiting the fragment shader and reduces draw cost. As
a result, the net number of pixels used in the low-acuity regions
is approximately equal for phase-aligned foveation and traditional
foveation. In Fig. 2, the low-acuity buffers are shown as 604×604
pixels, but only a fraction of these pixels are used.

After rasterization, these surfaces are upsampled, reprojected,
and composited onto a final full-resolution buffer. This buffer is
sent through lens distortion correction and presented to the display.
This process is repeated for both eyes each frame. By rendering this
scene in a foveated manner, a total of 1.5 million pixels are computed
per eye across three surfaces in the shown example, whereas a full
resolution rendering would require 3.7 million pixels on a single
render surface for each eye.

Increasing the number of required framebuffer objects adds an
overhead cost. Each object in the scene duplicates its draw calls
for each framebuffer used, increasing computation on both the CPU
and GPU. Fig. 3 shows how much GPU time is spent per frame
per eye in rendering and composition of a typical VR scene of a
3D mesh [2]. These measurements are for a VR headset with a
resolution of 2560×1440 pixels per eye, a horizontal binocular field
of view of 140 degrees, and full positional tracking, driven by a
desktop PC using a GTX-980 GPU. These measurements use an
upsampling factor of 10× 10 in the periphery with a high-acuity
region covering ±25◦ at the optical center.

Default rendering spends the majority of processing on raster-
ization, with the remaining GPU time allocated for software lens
distortion correction, totaling 3.4 ms per eye. Traditional foveation
with two regions reduces the total GPU time per frame to 1.9 ms.
Our phase-alignment method requires 2.0 ms on average per eye per
frame for the same level of upsampling.

Figure 3: GPU performance of Phase-Aligned Foveated Rendering
(PAFR) algorithm and Traditional Foveated Rendering (TFR). Each
column represents the breakdown of GPU time per frame per eye.

Phase-alignment costs slightly more than traditional foveation,
due to additional render targets, but the visual quality improvements
are dramatic [5]. More aggressive foveation can be used while
preserving the same perceived quality, yielding net savings. Further,
as future head-mounted displays use wider fields of view, multiple
frustums are required regardless to generate renderings that exceed
180◦, in which case phase-alignment is optimal.

4 LIMITATIONS AND CONCLUSION

Phase-alignment is most useful for VR headsets with a wide field of
view or high pixel density display. These systems require the most
pixels to be rendered and are bottlenecked by the fragment shader,
maximizing the benefit of foveation. Although phase-alignment adds
some overhead compared to traditional foveated rendering for the
same pixel count, due to additional render targets and composition,
it allows these headsets to foveate more aggressively [5, 9].

Phase-alignment is limited to providing flicker removal for rota-
tional movement only. If a user moves translationally, the world-
aligned cube is recentered on their eye position. Flickering is re-
duced, but not completely removed in this case. Flickering caused by
animation in the scene is still unaffected, so we recommend applying
additional smoothing techniques such as Temporal Anti-Aliasing
(TAA) to compensate for these effects [6].

REFERENCES

[1] B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram.
Foveated pipeline for ar/vr head-mounted displays. Information Dis-
play, 33(6), Nov. 2017.

[2] Crytek. Sponza sample scene. https://www.cryengine.com/
marketplace/product/sponza-sample-scene, 2016. [Online;
accessed 18-Oct-2017].

[3] M. Fujita and T. Harada. Foveated real-time ray tracing for virtual
reality headset. Light Transport Entertainment Research, 2014.

[4] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d
graphics. ACM Transactions on Graphics, 36(6), 2012.

[5] D. Hoffman, Z. Meraz, and E. Turner. Sensitivity to peripheral artifacts
in vr display systems. SID Symposium Digest Technical Paper, 2018.

[6] B. Karis. High-quality temporal supersampling. ACM SIGGRAPH
2014 Courses, (10), 2014.

[7] Y. S. Pai, B. Tag, B. Outram, N. Vontin, K. Sugiura, and K. Kunze.
Gazesim: Simulating foveated rendering using depth in eye gaze for vr.
SIGGRAPH ’16, July 2016.

[8] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty,
D. Luebke, and A. Lefohn. Towards foveated rendering for gaze-
tracked virtual reality. ACM Transactions on Graphics, 35(179), 2016.

[9] H. Strasburger, I. Rentschler, and M. Juttner. Peripheral vision and
pattern recognition: A review. Journal of Vision, 11, May 2011.

[10] M. Weier, T. Roth, E. Kruijff, A. Hinkenjann, A. Perard-Gayor,
P. Slusallek, and Y. Li. Foveated real-time ray tracing for head-mounted
displays. Eurographics, 35(7), 2016.

https://www.cryengine.com/marketplace/product/sponza-sample-scene
https://www.cryengine.com/marketplace/product/sponza-sample-scene

	Introduction
	Phase-Alignment Method
	Implementation and Results
	Limitations and Conclusion

