Energy Efficient Application-Specific Logic-in-Memory for Interpolation
in Synthetic Aperture Radar *

Qiuling Zhu, Eric L. Turner, Christian R. Berger, Kaushik Vaidyanathan, Larry Pileggi, Franz Franchetti
qiulingz@ece.cmu.edu, elturner@andrew.cmu.edu
Electrical and Computer Engineering, Carnegie Mellon University

Introduction

In the conventional von Neumann model where computing
systems are physically and logically split between memory
and CPUs, “memory wall” and “power wall” are well known
bottlenecks that have severely limited the energy efficiency
of applications. While running today’s memory intensive ap-
plications, modern computers spend most of their time and
energy moving data rather than for computation.

Logic-in-Memory

Welcome {0 the Logic-in-Memory Computing Paradigm

Compilation
Interactive Chip Generator
poneredty Gness

Local

Memory :
[fogke |

Figure 1: Application-Specific Logic-in-Memory

Main
Memory :
[logic |

=

Application Specific Logic-in-Memory. To enable large
savings of energy for important computational tasks, we
propose a novel computing paradigm—Application Specific
Logic-in-Memory—by blurring the distinction between mem-
ory and processing logic. As shown in Fig. 1, appropriate
application-specific logic is tightly integrated into the on-chip
“dumb” memory to enable localized computation. Compared
with the well known “Process in Memory” (PIM) [1], the key
is to be application-specific, which benefits from algorithm
and problem-level knowledge to optimize the embedded logic
and memory to a level that is impossible with traditional pro-
cessor designs. The proposed logic-in-memory blocks act
like special-purpose caches or scratch-pads. For the design
architect they appear as an ordinary memory block, but inter-
nally store and compute data efficiently.

Interpolation Memory. The new memory-centric compu-
tational paradigms require that computational logic is simple
and amenable enough to be easily embedded into memory ar-
rays for customized localized computation (basic boolean op-
erations, fixed-point additions, shifts, multiplier-less constant
multiplications, etc.). While many applications might benefit
from this methodology, we initially focus on the “interpola-
tion memory” modules, a “logic in memory” unit that com-
bines the seed table and simple arithmetic logic to efficiently
evaluate functions [4]. Previous investigations of 1D interpo-
lation memory have demonstrated very promising results in
memory-intensive signal processing applications, and we are
convinced that the extension of this study can be widely used
in many high performance embedded applications.

*This work was supported by DARPA/SRC FCRP C2S2.

Case Study: Grid Interpolation in SAR. In Synthetic
Aperture Radar (SAR), the commonly used Polar Format Al-
gorithm (PFA) is computationally intensive. The majority of
the processing time and power is consumed by a grid inter-
polation involving a resampling of the radar reflectivity func-
tion from a curvilinear grid, the polar annulus, to a rectangu-
lar grid, the Cartesian grid array [6]. The study shows that
this “re-gridding” can be achieved by a simple interpolation
algorithm; e.g., local bilinear or bicubic interpolation. The
PFA can then be accelerated by using the logic-in-memory
computing paradigm and its associated design tools. Simula-
tion results also show that the proposed localized interpola-
tion technique yields comparable error as conventional more
computation-intensive interpolation algorithms.

Bicubic Interpolation
&

F~ -T~ % o Ff; *

LEERT £ ¥ ¥

R ERR e . RN .
HET PRI vamtrmnion | 1212 ° e
h+h{:t + E Pt *’m
BN Tl D g o i,
1‘»4: %.,‘ 'T'??» 1. 1,.«. .

0 IR0 DUOEE
R aEEoaa FFFEH

@) (b)
Figure 2: Localized Polar-to-Rectangular Grid Interpolation

Application-Specific Logic-in-Memory for SAR

The proposed polar format interpolation implementation is
based on image geometric approximations, 2D surface in-
terpolation, as well as several advanced automatic design
methodologies. A high-level visual representation of the pro-
cess with bicubic interpolation is shown in Fig. 2.

Coordinate Conversion by Geometric Transformation.
The localized interpolation is to interpolate the grid points
P(z,y) in Cartesian space from their neighbors in the polar
annulus, which can be implemented with geometric perspec-
tive transformation followed by a general 2D interpolation.
For the first step, we map the polar grid into the rectangu-
lar grid in a normalized coordinate system by a four-corner
image geometric mapping. At the same time, the grid points
in Cartesian space is mapped into the same coordinate system
by using the same transformation function. Most of this trans-
formation involves trivial arithmetic logic. Although the divi-
sion operation is required for perspective transformation, its
denominator is a linear function of coordinates of the Carte-
sian grids. So we can implement it by a simple 2D linear in-
terpolation followed by a multiplication leading to negligible
accuracy loss. Overall, the whole geometric transformation
logic can be efficiently embedded into the memory array via
the logic-in-memory method.

(a) Original Scene (b) Gold Standard

(c) Linear Interpolation

(d) Cubic Interpolation (e) Upsampling Method

Figure 3: An original point target scene, with the outputs using various interpolation methods

Re-gridding by 2D Surface Interpolation. After coor-
dinate transformation, the previous polar grids now evenly
lie on the rectangular grids while the rectangular array be-
comes a quadrilateral in the same coordinate system. How-
ever, the relative distances of two grid arrays do not change.
That is, in Fig. 2(a) and (b), grid P(z,y) has the same polar
grid neighbors and also the same relative neighbor distances
(Az and Ay). Based on the relative locations between the
two grid arrays, we can easily determine the neighbor polar
annulus (pulse number, sample number) for the grids in Carte-
sian space. General 2D surface interpolation techniques are
then used to calculate the radar reflectivity function value on
Cartesian grids. Fig. 2(c) shows the example of bicubic inter-
polation. Two-dimensional interpolation is a separable trans-
formation, which is the product of multiple 1D interpolations
along orthogonal axes. The bicubic interpolation shown in
the figure can be divided into four horizontal 1D interpola-
tions and one vertical 1D interpolation. This property enables
us to easily extend 2D interpolation into multiple 1D interpo-
lations, resulting in a computationally efficient algorithm.

Chip Generator. The image formation process requires
a series of problem parameters such as the number of grid
points (i.e., the size of the grid) and the distances between
them. These parameters are determined by SAR image size
and geometry as well as radar parameters. Different settings
lead to different hardware design. On the other hand, the pro-
posed localized interpolation is a trade-off problem in terms
of performance/accuracy/cost. To automatically build vari-
ous design points and to allow for algorithm-level design op-
timization, we used the Genesis2 [2] design tool developed
by Stanford University to build an application-specific chip
generator. We codified all the combinations of SAR prob-
lem specifications and design trade-offs into a design tem-
plate and built an entire family of the SAR image format pro-
cessing chip designs at once. Detailed information of this
design methodology is in [3].

Smart Logic-in-Memory Compiler. To ensure robust and
energy-efficient circuit design in sub-22nm, we map mem-
ory and logic onto a set of pre-characterized pattern con-
structs, enabling logic-in-memory [5]. Exploiting the op-
portunities provided by modern process and physical design
tools, applications could be compiled into smart memory
module where logic is integrated into the embedded memory.
Since 2D interpolation requires one-cycle segmentation-free
functional access of a rectangular image window, we create a
rectangular-access smart memory with the proposed logic-in-
memory compiler and it provides rectangular accessibility at
any pixel position. This helps to save a significant area and
power overhead of memory peripheral circuits compared with
the conventional multi-bank memory design approach. With

this new design methodology and associated suite of design
tools, design optimization and customization will be enabled
at all the levels of abstraction (i.e. architectural, logic, and
physical).

Experimental Results

While the proposed implementation uses a localized bilin-
ear or bicubic interpolation, typically a different interpolation
scheme is used in existing implementations. Commonly, two
1D interpolation steps are used that upsample the polar grid
uniformly and then use a nearest-neighbor approach to find
values on the rectangular grid [6]. Since uniform upsampling
can be done efficiently using the (fast) Fourier transform, this
method is seen as advantageous, although the memory access
pattern is not suitable for logic-in-memory. Comparing the
output of the common approach with that of the proposed bi-
linear and bicubic interpolation, we see the distortion caused
by these interpolation methods are indistinguishable from one
another.

Distribution of Mean-Squared Error for Linear Interpolation Mean-Squared Error Distribution for Upsample Interpolation

imber of sampl
number of samples

mse mse

Figure 4: Probability Distribution of Mean-Squared-Error for linear interpo-
lation (left) and upsampling interpolation (right)

For quantitative comparison we simulated a randomized

radar scene of point targets and performing the interpolation
for each method (see Fig. 3). A reference “gold standard”
was included that is based on the non-uniform inverse Fourier
transform of the polar samples. The MSE in Fig. 4 is com-
puted relative to the output of this gold standard. This com-
parison shows that each of the three interpolation methods
considered result in the same output image distortion.

References

(1]

(2]
(3]

(4]

(5]

(6]

J. B. Brockman and P. M. Kogge. The case for processing-in-memory.
IEEE Computer, 1997.

Stanford genesis2 web site. http://genesis2.stanford.edu/mediawiki/index.php.

A. Solomatnikov; A. Firoozshahian; W. Qadeer; O. Shacham; K. Kelley;
Z. Asgar; M. Wachs; R. Hameed and M. Horowitz. Chip multi-processor
generator. DAC, pages 262-263, 2007.

A. S. Noetzel. An interpolating memory unit for function evaluation:
Analysis and design. IEEE TRANS. ON COMPUTERS, 38(3), 1989.

D. Morris; V. Rovner; L. Pileggi; A. Strojwas; and K. Vaidyanathan.
Enabling application-specific integrated circuits on limited pattern con-
structs. IEEE Symposium on VLSI Technology, 2010.

R. S. Goodman W. G. Carrara and R. M. Majewski. Spotlight Synthetic
Aperture Radar: Signal Processing Algorithms. Artech House, 1995.

