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Abstract In this paper we present a local interpolation-based
variant of the well-known polar format algorithm used for
synthetic aperture radar (SAR) image formation. We develop
the algorithm to match the capabilities of the application-
specific logic-in-memory processing paradigm, which off-
loads lightweight computation directly into the SRAM and
DRAM. Our proposed algorithm performs filtering, an im-
age perspective transformation, and a local 2D interpolation
and supports partial and low-resolution reconstruction. We
implement our customized SAR grid interpolation logic-in-
memory hardware in advanced 14nm silicon technology. Our
high-level design tools allow to instantiate various optimized
design choices to fit image processing and hardware needs
of application designers. Our simulation results show that
the logic-in-memory approach has the potential to enable
substantial improvements in energy efficiency without sacri-
ficing image quality.
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Fig. 1 Logic-in-Memory Computing Paradigm: application-specific
logic for localized computation is hidden behind a memory abstrac-
tion

1 Introduction

The polar format algorithm (PFA) used for image forma-
tion in synthetic aperture radar (SAR) is computationally de-
manding and data-intensive [1,2]. Its realtime constraints and
low-power requirements make it a promising target for ad-
vanced power-saving designs. On the other hand, its overall
system performance is often defined by the limited memory
bandwidth as well as the high cost of memory access. As a po-
tential solution to address these challenges, the application-
specific logic-in-memory (LiM) computing paradigm and
its design methodology [22,21] is proposed to move sim-
ple computation directly into the memory, and minimize the
data movement from memory to the processors for superior
energy efficiency (see Fig. 1).

This idea stems from recent studies of sub-20nm CMOS
design, which indicate that memory and logic circuits can be
implemented together using a small set of well-characterized
pattern constructs [3,5]. Our early silicon experiments in a
commercial 14nm SOI CMOS process demonstrate that this
construct-based design enables logic and memory bitcells to
be placed in a much closer proximity to each other without
yield or hotspots pattern concerns. While such patterning
appears to be more restrictive to accommodate the physical
realities of 14nm CMOS, the ability to make the patterns the
only required hard IP allows us to efficiently and affordably
customize the SRAM blocks. More importantly, it enables
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Fig. 2 Localized Polar-to-Rectangular Grid Interpolation.

the synthesis (not just compilation) of customized memory
blocks with user control of flexible SRAM architectures and
therefore facilitate smart memory compilation.

Advances in this chip design methodology gives rise
to the application-specific logic-in-memory computational
paradigm, which moves part of a program’s computation di-
rectly into the memory but keeps the usual memory interface.
It is easy to program, as all computational operations are hid-
den behind the memory abstraction. Logic-in-memory builds
on the idea of earlier processing in memory [4], however, puts
only simple logic instead of actual processing cores right into
the memory structures. Moreover, it requires application-
specific logic to reach the desired energy savings. Thus, it
is more specialized than the processor-in-memory idea [4,
11]. On an architecture level, the logic-enhanced memories
look like normal memories to the CPU, but perform extra
(and cheap) operations on the stored data before returning
the requested data item to the CPU.

Design automation is required for handling the increased
complexity of memory-logic-mixing hardware accelerators
and the intricacies of cutting edge and next-generation sil-
icon technology. Physical implementation of our logic and
memory-mixing hardware is enabled by the smart memory
compiler [3,5]. Further, we build application-specific high-
level design tools using the Genesis2 design tool [6,7]. The
combination of these tools allows designers simple design
space exploration to optimize their designs for energy bud-
gets, image reconstruction quality, and performance.

The major restriction of logic-in-memory is that only lo-
calized (nearest neighbor) data access can be implemented
efficiently, and that, applications with stride-like data access
patterns (e.g., Fast Fourier Transforms, FFTs) is prohibitively
expensive. Therefore, algorithms need to be adapted to match
the constraints of the logic-in-memory paradigm.

Related work Synthetic aperture radar is essentially
“taking a photo with radar” as the plane’s flight path syn-
thesizes a large antenna. A radar mounted on a plane sends
repeatedly pulses to the scene patch and records the reflec-
tions, rotating the antenna to aim at the same scene center

for all pulses. The image is formed by computing the inverse
FFTs of the recorded data. However, the data is sampled
on a polar grid, and the PFA first converts these polar sam-
ples into rectangular samples, so that a standard FFT can
be applied for image formation. Without this conversion, a
computationally infeasible non-uniform Fourier transform
would have to be applied [1]. In the widely used Mercury
algorithm, the polar-to-rectangular conversion is often done
separably (first processing all rows and then all columns of
the data), using FFT-based upsampling followed by picking
the nearest neighbor to the actual grid points of interest [2].
The reliance on FFTs makes this approach computationally
intensive, moreover, it requires non-local computation due
to the well-known FFT data access pattern. An algorithm
for logic-in-memory cannot rely on FFTs but requires lo-
cal computation, we need to develop a localized variant of
polar-to-rectangular interpolation.

Contribution The main contribution of this paper is an
algorithm for performing SAR polar format re-gridding in-
terpolation suited for the logic-in-memory paradigm, and to
provide the necessary design automation tool chain to imple-
ment our proposed algorithm in advanced silicon technol-
ogy. We combine filtering, geometric transformations, and
localized 2D interpolation to provide a virtual rectangular 2D
memory address space that is overlaying the polar grid and
performs the necessary interpolation on demand. Enabled by
this on-demand interpolation our system further provides par-
tial image reconstruction, allowing for reconstructing both
low-resolution thumbnails and high-resolution patches.

2 Algorithm

2.1 Local Interpolation Based Polar Reformatting

As has been introduced, the measurements of the radar reflec-
tivity function are taken on partial polar annuli, which need to
be converted to outputs on a Cartesian grid. Equivalently, the
interested points in the rectangular grid are determined by its
neighboring elements of the Polar Annulus in both the range
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Fig. 3 Image Tiling for Accurate Geometric Approximation.

and cross-range dimensions. We begin by superimposing a
Cartesian grid on the Polar Annulus. Then, for the star P(x)
(an exemplary output point) in Cartesian space, shown as the
biggest asterisk in Fig. 2 (a), we find the coordinates (pulse
number, sample number) of its corresponding neighboring el-
ements in the Polar Annulus (original measurements), shown
as four black points in Fig. 2 (a). We then compute the value
of the P(x) by taking the weighted sum of its four neighbors,
using their euclidian distance as weights. However, the es-
tablish of such direct correspondence requires complex non-
linear operations such as square root, arcus tangent, which
are not preferable in the LiM computing.

The main idea underlying our approach is to simply use
a standard 2D interpolation for polar data to rectangular data
reformatting, which has the potential of being efficient in
logic-in-memory. To simply the hardware implementation,
it is preferable that the measurements are in a rectangular
grid, although then the locations of the tentative outputs will
not be. To achieve this, we decompose this operation into two
steps, that is, a coordinate transformation followed by a 2D
surface interpolation.

The mapping from Fig. 2 (a) Fig. 2 (b) shows the first
step in implementing the interpolation-based polar format-
ting. We first approximate the partial polar annuli as straight
lines, making the full shape quadrilaterally tiled. We then
map the polar anulus (the polar grid on which the SAR data
is collected) to a rectangular grid by using a four-corner im-
age geometric mapping, specifically a perspective transfor-
mation [24]. The same perspective transformation is used to
map the tentative output locations into the same new coor-
dinate system. After the coordinate transformation, the mea-
surements lie on a rectangular grid, while the tentative out-
puts lie on a quadrilateral in the new coordinate system, see
Fig. 2 (b). In other words, this mapping distorts the rectan-
gular destination grid in the new coordinate system but pre-
serves its distances to the original data points. The new x and
y coordinates of the tentative output locations after mapping
indicate the the locations of the corresponding neighborhood
measurements and distances dx and dy to each of the neigh-
borhood measurements. Then we use standard 2D surface
interpolations to calculate the values of the tentative outputs
from their neighborhood measurements and the interpola-
tion weights. Fig. 2 (c) shows the example of the bilinear 2D
surface interpolation that requires four neighborhood mea-
surements.

Our localized grid interpolation is based on several geo-
metric approximations. Firstly, as we mentioned, we approx-
imate the polar annulus by quadrilateral tiles (Fig. 3) so that a
simple quadrilateral-to-quadrilateral four-corner perspective
geometry transformation can be used. Secondly, we assume
that the measurement grids are evenly distributed on a rect-
angular grid after the transformation. These approximations
could result in distortions in the resulting reconstructed im-
age. As shown in Fig. 3, accurate approximation is achieved if
the radian spatial frequency lower bound (RL) is large enough
(which is true for most SAR applications) and the coherent
integration angular interval (Θ) is small enough. Therefore,
an effective solution is to tile the image into small parts and
perform the geometry approximation on each tile. We tile
the output image in the Cartesian grid and find the minimum
subset of the polar annulus that contains the corresponding
rectangular tile. The resulting distortion is smaller than the
intrinsic distortion of perfect SAR image reconstruction.

2.2 SAR Image Partial Reconstruction

When reconstructing large data-set problems for small dis-
play devices (e.g., handheld devices), partial reconstruction
would be preferable to prevent energy waste from process-
ing all pixels and then displaying only a subset. Since our
local interpolation-based scheme is reconstructing one pixel
at a time in an on-demand fashion, partial reconstruction be-
comes feasible (see Fig. 4). However, since Polar Annulus is
sampled in the Fourier space, this involves a series of digital
signal processing operations across both the frequency do-
main and spatial domain. In the following, we will show two
partial reconstruction modes, that is, low resolution full-size
image display and high resolution partial-size image display.

In the first scenario, we get a quick overall view of the
whole image without the fine-scale details (a thumb nail).
This corresponds to multiplying the Fourier space (the orig-
inal data) with a mask which attenuates the high frequency
components. Only data elements that correspond to the low
frequency components are interpolated and computations for
high frequency components are saved. A much smaller 2D
inverse FFT can be used afterwards, saving a substantial
amount of operations.

As the second scenario we reconstruct only a small por-
tion of image (however, at full resolution). This can be seen
as multiplication by a mask in the spatial domain, or equiv-
alently, as decimation filtering in the frequency space [25].
Filtering is necessary for image anti-aliasing and the filter
decimation factor corresponds to the proportion of the image
area to be reconstructed in space. Using Fourier identities
we can reconstruct sub-patches of an image at arbitrary po-
sition with arbitrary size. In the implementation we rely on
the combination of a CIC and short FIR filter for decimation
since the CIC filter requires no multiplications and its simple
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Fig. 4 SAR partial image reconstruction.

hardware implementation can be easily integrated with the
logic-in-memory interpolation, however, accuracy requires
us to uses some FIR filtering.

Computational cost In Mercury algorithm, grid in-
terpolation is the the most computationally intensive por-
tion as it involves two FFTs per segment/secant for each
range/crossrange line [2]. In our local interpolation approach,
all the interpolation related FFT/IFFT operations are avoided.
The proposed grid interpolation has economical hardware
implementations. Moreover, these operations are computed
locally in the memory and therefore consume much less en-
ergy compared with in-CPU computing. For partial recon-
struction, additional in-memory computation for decimation
filters are required. However, the chosen CIC filter only in-
volves eight adders and eight storage registers for any deci-
mation factors. Under partial reconstruction, inverse 2D-FFT
size is reduced which saves the unnecessary operations and
thus energy.

3 Hardware Implementation

In this section, we will describe the detailed hardware imple-
mentation of the proposed LiM-based SAR polar reformat-
ting and partial reconstruction algorithm.

3.1 Interpolation Memory Implementation

As the most important logic operation in our approach, 2D
interpolation (e.g., bilinear, biquadratic, bicubic) is exploited
after the perspectively transformation to calculate the values
of the tentative outputs from the neighboring measurements
and the interpolation distances in the transformed coordinate
system. To implement the interpolation operations efficiently,
we propose a LiM block, namely, interpolation memory. In-
terpolation memory holds function values at evenly spaced,
non-contiguous memory addresses, and the integrated logic
performs polynomial interpolation operations on each read
reference for locations that do not hold data. Thus, these in-
terpolation memory blocks contain a seed table that stores
the known function values, and compute “in-between” val-
ues on the fly. It has a larger memory read address space than
write address space. Interpolation memory is a very general
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Fig. 5 Interpolation Memory Architecture: n bit read address space and
k bit write address space (i.e., seed table size); the “in-between” values
are approximated from 16 neighboring memory references on the fly.

LiM building block that can benefit many signal and image
processing algorithms [23,17,24,20].

In the left part of Fig. 5, we show the hardware struc-
ture of a 2D cubic (bicubic) interpolation memory. Assum-
ing the array of polar format measurements has the size of
2k×2k and the interpolation distance has r-bit resolution. Af-
ter the perspective transformation, the resulting x-coordinate
and y-coordinate of the tentative outputs in the new coordi-
nate system serve as the n-bit input addresses here. Given
the input addresses, the 2D interpolation memory returns the
corresponding pixel value at that location, which is actually
interpolated from its neighboring measurements in the orig-
inal polar grid. Internally the input address is split into two
parts. The higher k bits are used to address the measurement
points in the original polar grid. And the lower r = n−k bits
are used to specify the distances between the evaluated out-
put point and its nearest neighborhood measurements. The
output pixel values are the weighted approximations of the
neighborhood measurements, and the weights are set by in-
terpolation distances. The number of nearest neighborhood
memory references to be considered is determined by the in-
terpolation order. Power-of-2 indexing mechanism is appli-
cable for most interesting problems, and it largely simplifies
the hardware implementation.

In terms of interpolation operation, 2D interpolation can
be separated into multiple 1D interpolation in both orthog-
onal axes. For example, the 2D cubic interpolation in Fig. 5
can be separated into four horizontal 1D cubic interpolations
and one vertical 1D cubic interpolation (or vice versa). In
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Fig. 6 Memory Access Pattern: gray array represents the stored function
values and the black points are the nearest neighbors to be accessed for
the interpolation of the non-stored function values (red stars).

the right side of Fig. 5, we illustrate the datapath of a 1D
cubic interpolation operation. We use Newton’s divided dif-
ferences interpolation polynomial since it is easy to realize
in hardware and amenable to be parameterized [19]. The
dth-order function value Pd(x) is calculated from its neigh-
borhood pixels values f (x) at points of 0, . . . ,x(d−1) and it’s
shown as follows:

Pd(x) = k0+k1 ·(x−x0)+ . . .+k(d−1) ·(x−x0) . . .(x−xd−1)

For i∈ [0,d−1], ki = f (i)(x) is the ith order divided difference
of f (x), and the computation of ki in hardware for integer
data types only involves additions and shifts. zi = x− xi are
so-called the interpolation distances, which are determined
by the lower r bits of the input address. The computational
complexity, and the overall hardware cost is proportional to
the interpolation order. The bit widths of the data path can
be precisely specified so as not to implement excessive bits,
and not to introduce additional error. This approach can be
cheaply implemented in logic-in-memory, both for integer
and floating-point output. This insight is a crucial enabling
step for our logic-in-memory SAR variant.

3.2 Rectangular-Access Smart Memory

The interpolation operation requires to access multiple con-
secutive elements in a 2D data array stored in SRAM within
a single cycle. Fig. 6 (a) and Fig. 6 (b) shows the access
patterns for the bilinear and bicubic interpolation memories.
For example, a 4× 4 rectangular memory access is needed
for the bicubic interpolation. Larger block-size access is re-
quired in the implementation of parallel image processing,
e.g., to construct a rectangular block of pixels in parallel. It
is observed during our experiments that the reconstruction
of adjacent pixels actually share some of the neighborhood
measurements. As shown in Fig. 6 (c), to compute the pixels
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Fig. 7 Customized Rectangular Access Memory: customized memory
periphery design allows parallel memory banks to share the x-decoder.

in the 6×6 block with bilinear interpolation, all the required
neighborhood measurements are clustered within the block
of neighborhood 8× 8 polar grid array. Therefore, a 8× 8
rectangular access memory is required to output all the 8×8
measurements to the processor and then the computation of
the samples in the 6×6 block can be performed in parallel.

Traditionally, these parallel memory accessing is accom-
plished by distributing data across multiple memory banks
so that for any consecutive access all data elements are re-
trieved from different banks without conflicts. Using multiple
SRAM banks incurs high overhead since every memory bank
requires its own decoder logic. Using logic-in-memory it is
possible to build multi-bank memories that share parts of the
decoder logic to exploit the known access pattern.

We exploit the fact that we always read a constant num-
ber of consecutive elements per cycle for each interpolation.
The core observation is that after address decoding, the acti-
vated wordlines of all memory banks are always adjacent to
each other. Based on that, it’s possible to optimize the multi-
banking memory system to save the periphery overhead. We
employ the a customized multi-banking SRAM design topol-
ogy [13], which provides around 50% area and power sav-
ings compared with the traditional multi-banking memory
design. However, the design of such customized memory re-
quires careful circuit design, sizing and layout, which is a
significant design cost if it cannot be automated.

We define the functionality of memory to support one-
clock-cycle rectangular access of 2a × 2b data points from
a 2m × 2n 2D data array. The input of the memory system
is the top-left coordinate of the accessing rectangular block
(x[m−1:0],y[n−1:0]) and the outputs are all the data point inside
the rectangular block. For bicubic interpolation, we have a =
b = 2 .

To support one-cycle consecutive access of 2a data points
in x dimension and 2b data points in y dimension, the param-
eterized memory is divided into 2a memory blocks; and in
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each block, there are vertically parallel 2b memory banks. To
control the memory block aspect ratio, we let each word of
a memory bank (bank word) holds 2c data points, therefore
a block word contains 2(b+c) data points. The 2D data array
first distributes its 2m data rows into 2a memory blocks row
by row (e.g., block-i holds row[i], row[2a + i], row[2a+1 + i],
. . .). All the 2a memory blocks have the same structure. Fig. 7
shows the organization of block-0 when m= n= 6, a= b= 2,
c = 2.

The main idea is to let 2b memory banks in each memory
block share a modified X-decoder by using the same method
described in [13]. The X-decoder is specifically designed
to activate two adjacent wordlines simultaneously. That is,
when one block wordline is asserted, the next block wordline
is also asserted by the OR gate operation of every two ad-
jacent wordline signals. Another Y -decoder is used to select
one of the two activated wordlines for each memory bank
with the AND operations. Each memory bank word holds 2c

data points but each time only one data point of them is re-
quired. A column MUX is designed to select one data element
for each memory bank and the column MUX is controlled
by the lower (b+ c) bits of address y (y[b+c−1:0]).

As shown in Fig. 7, both the first wordline (WL[0]) and
the second wordline (WL[1]) are initially activated by X-
decoder but Y -decoder further selects the WL[1] for bank0
and WL[0] for the other three banks. After the column MUX,
block0 outputs data series of ‘8−5−6−7’, which are then
reordered to be ‘5−6− 7− 8’. With some simple logic for
data reordering, the smart memory outputs the required 2a×
2b data points in order simultaneously. As shown in Fig. 7,
the distributions of address bit to each memory component
is parameterized. By specify these parameters, the resulting
memory architecture can be precisely determined.

Compared with the conventional multi-banking memory
design, the amount of memory bank periphery circuits is
reduced from 2a+b to 2a. As is observed in Fig. 7, the resulting
memory architecture has the embedded logic gates (e.g. the
AND gates) tightly integrated with the memory cells, and
each logic gate communicates with its local memory cells.
The hardware synthesis of these novel smart memories will
be presented in Section4.

3.3 Image Perspective Transformation

Another core component of our SAR variant is the perspec-
tive transformation. We use it to map both of the original
polar measurements and tentative rectangular outputs to the
new coordinate system such that the measurements lie on a
rectangular grid, while the tentative outputs lie on a quadri-
lateral. After this mapping, a standard 2D interpolation can
be used for the image reformatting. The perspective transfor-

mation function is given by

[x′,y′,w′] = [u,v,w]

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (1)

where x = x′/w′, y = y′/w′. The transformation function, ba-
sically the coefficients ai j are determined by establishing the
correspondences between four corners of the original polar
annuli and new coordinate grids [24]. Then the same trans-
formation function is used to map each point (u,v) of the
tentative rectangular output to the point (x,y) in the new co-
ordinate system from the following mapping functions:

x =
a11u+a21v+a31

a13u+a23v+a33
;y =

a12u+a22v+a32

a13u+a23v+a33
(2)

As we can see, the perspective transformation mostly
involves simple arithmetic logic like additions and mul-
tiplications. Although the division operation is also re-
quired, we observed that the denominator is a linear func-
tion of the u and v coordinates. Therefore, for the items
of (1/a13u+a23v+a33) (1/a13u+a23v+a33), we can first
evaluate their values at the four corners, that is, (u= 0,v= 0),
(u = 0,v = 1), (u = 1,v = 0), (u = 1,v = 1), and then the
item values at other locations can be computed by a bilinear
interpolation from the four corners. In this way, we convert
the division to a bilinear interpolation and a multiplication
leading to negligible accuracy loss.

The whole geometric transformation logic is embedded
into the memory boundary together with the 2D interpolation
logic. From the user’s point of view, the resulting LiM block
is a normal memory that stores the pixel values at rectangu-
lar grids and returns the requested pixel value on command.
However, internally it actually stores the polar grid mea-
surements in the physical memory and has the application-
specific logic computation embedded in the memory bound-
ary. Therefore, LiM block provides a virtual rectangular 2D
memory address space that is overlaying the polar grid and
performs the necessary logic operation inside the memory
abstraction.

3.4 Frequency Filter

The important logic operation involved in the SAR image
partial reconstruction is the filtering, which enables us to im-
plement partial image reconstruction for both low-resolution
thumbnails as well as high-resolution scene patches in logic-
in-memory. We rely on simple Fourier transform identities
to translate phase shifts in frequency space to time-domain
displacements [25].

A wide range of decimation factors is required for differ-
ent problem size with different display resolution. Straight-
forward implementation of finite impulse response (FIR) fil-
ters becomes too expensive for long tap lengths. In order
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Fig. 8 LiM Design Framework

to build the filter into the logic-in-memory device, it is re-
quired that hardware implementation is as simple as possible.
A finely-tuned combination of FIR and cascaded integrator-
comb (CIC) filters can be implemented very efficiently in
logic-in-memory. After evaluate the accuracy-cost decima-
tion filter design space, we use FIR Polyphase filter for low
decimation factors (e.g, 2, 4) and use Cascaded Integrator
Comb (CIC) filter for high decimation factor (e.g. 8, 16, 32,
64, 128). CIC filter is chosen because no multipliers and no
intermediate storage are required, and the same filter design
can easily be used for a wide range of decimation factors
with an additional scaling circuit and minimal changes to
the filter timing. However, another CIC compensation filter,
which is usually implemented as FIR inverse sinc filter is usu-
ally required to compensate the non-flat passband and wide
transition-region. It is performed after the decimation so that
there is no much additional cost.

4 Design Automation Framework

4.1 Design Trade-off Analysis

The image formation process requires a series of problem
parameters and each parameter setting leads to a different
hardware implementation. In addition, as the major compos-
ing parts of the system, both interpolation and filtering are
trade-off problems in terms of performance/accuracy/cost.

Our 2D interpolation memory stems from the polynomial
interpolation for numerical function evaluation [23,17]. We
only consider up to the 3rd interpolation order, that is, bilinear
(d = 1), biquadratic (d = 2), and bicubic (d = 3). The inter-
polation order (d) together with physical memory size (2k)
determine the interpolation accuracy (binary precision bits,
w). Numerical analysis shows that for any function f (x) that
has d + 1 derivatives, d + 1 additional precision bits (w) of
the computed P(x) are obtained for each additional physical
address bit (k) for interpolating order (d) [23]. The trade-
off among these parameters is shown in (3), in which e is
the error bits in the precision bits w that are tolerated by the

application.

(w− e) ∝ (d +1)k (3)

(3) gives rise to a design space involving data precision bits,
interpolation accuracy, interpolation order, and interpolation
resolution. And it further leads to different memory/logic
area and energy costs for a desired accuracy.

The parametrization of filter specifications also provide
a large design space. For example, the transition-region of
a non-ideal filter will result in added distortion at the image
edge. Therefore, the narrower the transition region the better
the edge quality, but the higher the filter degree, thus higher
the hardware cost. In applications where only the information
at the center of the image is important and the image edge
quality can be sacrificed, the transition-region related filter
specification can be relaxed in order to save hardware. In
our implementation, we use the region-of-interest (ROI) to
specify the ratio of the interested image center area compared
with the overall image area, which determines the transition-
region of the filter (rolloff factor).

This shows that different design decisions will result in
different tradeoffs. The combination of these design choices
constitutes a huge design space. Further, exploring the design
tradeoff space requires customized memory designs, which
are traditionally prohibitively expensive. Thus, a strong de-
sign automation tool is required to make the hardware syn-
thesis feasible.

4.2 LiM Design Framework

We have developed a design generation and design space
exploration tool for the LiM design. The complete design
framework structure is shown in Fig. 8.

Our design framework provides designers with a graph-
ical user interface to select application functionality and pa-
rameters and then generates synthesizable RTL designs for
specified functionality. Free or un-specified parameters can
be optimized by the system. A designer then evaluates the
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Fig. 9 Design Framework User Interface

obtained designs and can explore the design space and opti-
mize the design for the application by varying the parameters.
The design framework consists of the tool frontend which
is built from the architectural chip generation infrastructure
“GENESIS” [7,9] and the tool backend that is built from the
pattern-construct based smart memory compiler [3,5].

“Genesis” chip generator The frontend of the design
tool chain is a standalone design tool framework named
“Genesis” [14,7,9]. It is responsible for application inter-
facing, design optimization and efficient RTL generation.
Genesis is a framework that simplifies the construction of
highly parameterized IP blocks. Unlike existing HDLs that
calcify any existing flexibility at instantiation, Genesis leaves
low level optimization “knobs” free even after aggregation
into bigger IP blocks, allowing them to be set and optimized
later in the design process. To achieve that, Genesis enables
the hardware designers to simultaneously code in two inter-
leaved languages when creating a chip module: a target lan-
guage (SystemVerilog) to describe the behavior of hardware
and a meta-language (Perl) to decide what hardware to use
for given specs. The net result is that Genesis enabled us to
design an entire family of LiM designs, all at once. After the
parameterized design was complete, there is still the matter
of controlling all the parameters and they can be made explic-
itly by the user or automatically by optimization tools. The
generator mechanism provides a standardized way, via an
XML form, for optimization tools to make design decisions
for various given parameters throughout the design hierarchy.
Genesis classifies parameters into three groups. First, an in-
herited or constrained parameter is one that is inherited from,
or constrained by decisions made in other modules in the de-
sign hierarchy (e.g., interface bit width). The second type of
parameter is the free parameter-parameters whose values can
be freely assigned by the system and it is best to allow an opti-
mization engine to set the value that maximizes performance
under a given power or area constraint. A third type of param-
eter is the architectural parameter that changes the function
or the behavior of the module. These are the parameters that
must be set by application designer. An inherit priority rule
in Genesis determine the assignment/overwritten policy of
parameter values.

Smart memory compiler The automated design frame-
work discussed so far is capable of mapping application

specifications to optimal RTL. Equally important, a smart
backend of the design tool chain is required to efficiently
co-synthesize logic and memory (the right part of Fig. 8).
Generic SRAM compilers enable automatic SRAM IP cre-
ation based on user specification, but they “compile” memory
blocks from a set of pre-determined SRAM hard IP compo-
nents (e.g., bitcells and peripheral circuits). This compila-
tion strategy not only limits the possibility of application-
specific customization but also hinders comprehensive de-
sign space exploration, leading to a sub-optimal IP. We have
been exploring opportunities for synthesis (not just compi-
lation) of customized logic-in-memory blocks in a commer-
cial sub-20 nm CMOS process and successfully developed
a “smart memory” design and synthesis methodology. The
“smart memory” is composed of a group of Memory Arrays
(MA), peripheral circuits and application specific random
logic implementing a special function. The major step in the
design of smart memory is to co-optimize logic, memory
and process. In order to predictably print the tight pitches in
extreme nodes, the design rules require an extremely regu-
lar and gridded design making logic and memory co-design
easier, for that we have created a bitcell compliant area-
efficient unidirectional logic fabric. This methodology allows
us remove any distinction between pushed memory design
rules and logic design rules. Therefore, customized mem-
ory periphery is synthesized using lithographically compli-
ant unidirectional standard cells which can be mapped to-
gether with memory a small set of pre-characterized layout
pattern constructs [3,5]. Lithographic compliance between
the co-designed logic and memory ensures sub-20nm manu-
facturability of LiM circuits. The architectural frontend and
physical backend are combined to build an end-to-end LiM
design framework [22,21,8]. Its input is the design specifica-
tion and the output is ready to use hardware (RTL, GDS, .lib,
.lef). When generating a specified design point, our frame-
work also reports the area, power and latency and send them
back to the frontend user interface, from which the designer
can evaluate the resulting design and reset the design specs
for redesign if necessary. Our LiM framework allows an ap-
plication designer to generate the optimized “silicon” tem-
plates by simply tuning the “knobs”.

User interface illustration We show in Fig. 9 the user
interface of our LiM-based SAR image reformatting design
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Fig. 10 Rectangular Access Memory Cost Evaluation

tools. The design parameters are listed in the left panel and
module structure is shown in the right panel. Functional pa-
rameters (e.g., Data precision, interpolation order) are set by
the application designer. In our example in Fig. 9, the prob-
lem is defined of reformatting a 256×256 polar grid array to
the rectangular grid array by using the bilinear interpolation
method, and the interpolation resolution is set to be 8 bits.
To achieve this, a 2D bilinear interpolation memory with a
256× 256 physical memory size and a 2× 2 access size is
required, which is a separate LiM design tool we built and
here acts as a sub-module of the image reformatting tool.
Constrained by the higher-level image reformatting tool, it’s
parameters are shown in right part of Fig. 9 (b). This inter-
polation memory contains a second-level sub-module, that
is, a 2× 2 rectangular access memory for supplying 2× 2
block pixels to its higher level bilinear interpolation memory
module. When satisfied with the parameters, the user sim-
ply clicks the “Submit Changes” button, the tool will start to
run and the dedicated hardware description in Verilog will
be generated.

As seen in the example, we are building a LiM tool that is
hierarchically composed from lower-level LiM design tools.
All of these submodules in the designs provide users the hier-
archical graphical tools to design instances of the algorithm
with the capability of exploring the design space to trade off
costs and performances.

5 Experimental Results

In this section we evaluate our logic-in-memory based SAR
implementation for accuracy, performance and cost. We use
our design tool to automatically synthesis the hardware for
measurement and also build an architectural model to simu-
late the algorithm.

Consecutive access smart memory evaluation The
smart rectangular access memory is the kernel part in the
interpolation memory, so we first evaluate its design. With-
out the loss of the generality, we show the results for the 1D
rectangular access memory (that is, a = 0 in a 2a × 2b ac-

cess memory). In Fig. 10 (a), we compare its hardware cost
in terms of power-delay-product with the traditional multi-
banking memory design. Both design have the same func-
tionality to read out 1× 8 consecutive memory elements in
one clock cycle. It’s seen that our rectangular access mem-
ory achieves around one-order magnitude saving. To better
understand the design tradeoff of the customized memory
periphery, we plot its hierarchical periphery area distribution
for three difference readout block size as shown in Fig. 10
(b). From the plots, we see the x-decoder is getting smaller
with the increase of the access block size, while the area of
the other periphery circuits is increasing. This is because the
increase of the access block size will make the memory wider
and shorter as there will be more memory sub-banks located
horizontally in parallel to share the x-decoder. The total mem-
ory area will be approximately the same for different access
sizes. Therefore, there is little or negligible overhead associ-
ated with the increase of the access block size, which ensures
the cost-effectiveness of the rectangular access memory de-
sign.

Accuracy and hardware cost evaluation We then com-
pare the accuracy of our local interpolation (e.g., bilinear,
bicubic) SAR algorithm to the conventional FFT upsampling
based approach. We simulated a randomized radar scene of
point targets and performed the re-gridding using each inter-
polation method, see Fig. 11. A reference “gold standard” is
included that is based on the computationally infeasible non-
uniform inverse FFT that has a closed-form solution for point
targets. As the quantitative comparison, Fig. 12 shows the
mean square error (MSE) distribution for each method rel-
ative to “gold standard” method. We see that the distortions
caused by the traditional memory intensive FFT updampling
based approach and the local interpolation methods are statis-
tically indistinguishable. In Fig. 13 (a) we vary tile numbers
and interpolation complexity. As expected, we see the MSE
decreasing for larger tile numbers and higher interpolation
order.

Next we evaluate the hardware cost of revised polar re-
formatting algorithm. Fig. 13 (b) shows the decimation filter
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(a) Original scene (b) Gold standard (c) Linear interpolation (d) Cubic interpolation (e) FFT upsampling
method

Fig. 11 An Original and Four Reconstructed Point Target Scenes Using Various Interpolation Methods
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Fig. 13 Experimental Results.

area with different region-of-interests (ROIs) and different
filter stopband attenuation. The ROI is defined as the ratio
of the area of the image centric subset that needs to be accu-
rately reconstructed compared with the overall image area.
As expected, higher ROI indicates higher image quality but
consumes more hardware cost. Fig. 13 (c) demonstrates the
overall hardware cost of LiM blocks on sub-20nm commer-
cial CMOS technology; the y axis values are the logic area
relative to the memory area. The bottom curve shows the grid
interpolation area for the full image reconstruction. For par-
tial reconstruction, the top three curves add in the decimation
filter area for three filter design specifications. We see that
although the area for partial reconstruction increases slightly
with the increase of decimation factor, the y axis values are
fairly small for all the design points. Thus, the logic area is

negligible compared with memory area for both full and par-
tial reconstruction. In Fig. 13 (d), it shows that the number of
arithmetic operations for the 2D IFFT is decreasing with the
increase of the decimation factor in partial reconstruction.
From the results in Fig. 13(c) and Fig. 13(d), the decrease of
operations through smaller IFFTs in partial reconstruction is
not increasing the hardware cost substantially.

Energy efficiency To evaluate the energy efficiency of
our logic-in-memory SAR implementation, we simulate the
whole SAR polar format algorithm in two variants: (1) we run
the image reconstruction on a simple processor with a stan-
dard SRAM cache, and (2) we replace the cache with our
logic-in-memory hardware that performs the interpolation in
the memory and run a program reconstructing the image us-
ing this memory. We measure the energy consumption using
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the Wattch simulator, which is an architectural level power
simulator based on SimpleScalar [26]. We model the logic-
in-memory as direct-mapped on chip memory and scale the
memory accessing energy by adding the normalized embed-
ded logic cost from the hardware characterization results.
We plot the results for both the conventional and logic-in-
memory architecture at different problem sizes from 32 to
512. The results in Fig. 14 show orders of magnitude of en-
ergy saving achieved by logic-in-memory especially for large
data-size problems.

6 Conclusion

Advances in integrated circuit design enable the energy-
saving logic-in-memory paradigm, which moves part of the
computation directly into the memory array. This cutting-
edge design methodology requires redesign of well-known
algorithms to match its performance characteristics. In this
paper we derive a logic-in-memory variant of the polar for-
matting algorithm used in SAR image formation, and it has
equal accuracy as the traditional FFT-based polar formatting
algorithm but requires much less energy. Our algorithm fur-
ther supports partial image reconstruction. We provide the
necessary design automation tool chain to enable users to
study design trade-offs in the energy and performance space.
Our experimental results show substantial energy saving at
the same accuracy level.
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