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Abstract—Image based localization is an important problem
with many applications. In our previous work, we presented a two
step pipeline for performing image based localization of mobile
devices in outdoor environments. In the first step, a query image is
matched against a georeferenced 3D image database to retrieve
the “closest” image. In the second step, the pose of the query
image is recovered with respect to the “closest” image using cell
phone sensors. As such, a key ingredient of our outdoor image
based localization is a 3D georeferenced image database. In this
paper, we extend this approach to indoors by utilizing a 3D locally
referenced image database generated by an ambulatory depth
acquisition backpack that is originally developed for 3D modeling
of indoor environments. We demonstrate retrieval rate of 94%
over a set of 83 query images taken in an indoor shopping center
and characterize pose recovery accuracy of the same set.

Keywords—image retrieval, indoor localization, 3D reconstruc-
tion.

I. INTRODUCTION

Indoor localization is an important problem with many use-
ful applications such as geotagging and augmented reality. The
most basic form of localization available to cell phones today is
GPS. Unfortunately, GPS is only suitable for outdoor, rather
than indoor environments. Furthermore, urban environments
with tall buildings compromise GPS accuracy outdoors.

A number of alternative technologies have been proposed
for indoor positioning systems over the years. These include
optical [1], radio [2]–[6], magnetic [7], RFID [8], and acoustic
[9]. Of these, most work has been focused on WiFi based local-
ization which takes advantage of the proliferation of wireless
access points. By using the user’s cell phone to measure the
signal strength of various wireless access points, the user’s
location is constrained to a relatively small area within a large
indoor environment. However, there are several drawbacks to
this approach. Aside from the fact that runtime operation of
such a system requires the use of the same access points at the
same location as in the calibration stage, its accuracy critically
depends on the number of available access points. For instance,
in order to achieve sub-meter accuracy, 10 or more wireless
hotspots are typically required [3]. In indoor environments
such as a mall, this would mean localization accuracy remains
high in the center of the building, but drops sharply near
the periphery, such as entrances or exits. Furthermore, such a
system cannot determine the orientation of a user. This crucial
shortcoming makes it impossible for WiFi localization by itself
to support augmented reality applications.

Bluetooth beacons placed throughout the indoor environ-
ment can also be used for localization. Similar to WiFi, Blue-

Fig. 1. Overview of our indoor localization pipeline. The pipeline is
composed of (a) database preparation, (b) image retrieval, and (c) pose
estimation stages.

tooth localization measures the user signal strength measured
and is capable of achieving up to 1 meter level of accuracy
[4]. While Bluetooth devices are relatively cheap and have
high spatial selectivity, they experience high latency during
the discovery phase [5].

There have also been previous attempts at indoor image
based localization whereby information captured via the cell
phone camera sensors are used to match images from a
database [10]. The authors in [10] take advantage of off-the-
shelf image matching algorithms, namely color histograms,
wavelet decomposition, and shape matching and achieve room-
level accuracy with more than 90% success probability, and
meter-level accuracy with more than 80% success probability
for one floor of the computer science building at Rutgers Uni-



versity. This approach however, cannot be used to determine
the absolute metric position of the camera, nor its orientation.
Thus it cannot be used in augmented reality applications where
precise position and orientation is needed.

In this paper, we demonstrate an image based localization
system for mobile devices which is not only capable of
achieving sub-meter localization accuracy but also determines
orientation. This system has the added advantage in that it
requires no other hardware aside from the user’s cell phone
and a server to host an image database for its operation.
Our proposed system consists of three components, shown in
Fig. 1:

Fig. 2. Diagram of the data acquisition backpack.

(1) Database Preparation, shown in Fig. 1(a): We use
a human operated ambulatory backpack, as seen in Fig. 2,
outfitted with a variety of sensors to map the interior of a
building in order to generate a locally referenced 3D image
database complete with SIFT features [11]–[13]. By locally
referenced image database, we mean that the absolute 6
degrees of freedom pose of all images, i.e. x, y, z, yaw, pitch,
and row, are known with respect to a given coordinate system.
By 3D, we mean there are depth values associated with each
pixel in the database image.

(2) Image Retrieval, shown in Fig. 1(b): We load all of the
image database SIFT features into a kd-tree and perform fast
approximate nearest neighbor search to find a database image
with most number of matching features to the query image
[14]–[16].

(3) Pose Estimation, shown in Fig. 1(c): We use the SIFT
feature matches along with cell phone pitch and roll to recover
the relative pose between the retrieved database image in step
(2) and the query image. This results in complete 6 degree
of freedom pose for the query image in the given coordinate
system [17].

The outline of the remainder of the paper is as follows:
In Section II, we describe step (1) in more detail. In Section
III, we examine steps (2) and (3) of our system. Section IV
includes experimental setup and results.

II. DATABASE PREPARATION

In order to prepare the image database, an ambulatory
human operator first scans the interior of the building of
interest using a backpack fitted with 2D laser scanners, fish-
eye cameras, and inertial measurement units as shown in Fig. 2
[11]–[13]. Using scan matching algorithms, we localize the
backpack over time by recovering its 6 degrees of freedom
pose. Fig. 3(a) shows the recovered path of the backpack
within the shopping center. Recovered pose and the rigidly
mounted cameras on the backpack are used to generate a
locally referenced image database in which the location, i.e.
x, y, and z, as well as orientation, i.e. yaw, pitch, and roll, of
each image is known.

Full recovery of the backpack pose also allows us to
transform all the laser scans from the left and right vertical
geometry scanners as well as the down scanner shown in Fig. 2
into a single 3D coordinate frame, which then results in a 3D
point cloud as seen in Fig. 4(a) [12]. This point cloud and a
novel surface reconstruction algorithm are used to reconstruct
a 3D polygonal model of the building [18]. Fig. 4(b) shows
an example of the model outputted by the algorithm. Given a
registered point cloud representing indoor building geometry,
this surface reconstruction algorithm generates a watertight
triangulated surface that preserves sharp features and fine
details of the building model. Since the mobile scanning
system generates the point cloud, each point is produced with
the scanner at a particular location and orientation. As such,
the line-of-sight between the scanner and the resultant point is
guaranteed to be free of obstacles. This surface reconstruction
approach works by partitioning space into interior and exterior
sets. The interior sets are “carved” away by labeling any
volume that is intersected by such a scan-line as interior. Any
space that is intersected by no such scan is considered exterior.

This labeling occurs on a voxel grid. By performing ray-
tracing for each scan-line, all voxels are efficiently labeled as
either interior or exterior. Once the voxel labeling is complete,
the boundary between these two volumes are exported as a
watertight surface. Ensuring a watertight surface is crucial, so
that a depth map of the environment is recoverable from any
orientation. This boundary surface is segmented into planar
regions, which are then adaptively triangulated as seen in
Fig. 4(b). This piece-wise planar segmentation yields three
advantages. First, it matches prior knowledge of building
interiors, which often consist of flat regions intersecting at
sharp corners, such as floors, walls, and ceilings. Second,
the planarity assumption ensures that the plane equation is
known for each surface of the model, thereby simplifying the
homography computation for the pose recovery step. Third,
this segmentation allows for efficient triangulation of the sur-
face, yielding faster raytracing performance and lower memory
overhead during processing. The output surface is one that
preserves enough detail to depict the important features for
indoor pose recovery, such as the geometry of store-fronts,
while still providing a simple enough model to allow for
efficient processing.

With a simplified 3D model of the building interior, the task
of generating depthmaps for each image becomes relatively
straightforward. Making use of each database image’s location,
pose, and intrinsic parameters, we trace a ray starting from the
camera origin of the database image and through each pixel



Fig. 3. (a) Recovered path of backpack traversal. (b) Wall points generated
by backpack. (c) 2D floorplan recovered from wall points.

of the image. The ray is traced until it intersects with the
first piece of geometry in the path of the ray. In doing so,
we are able to calculate the distance from the camera origin
to the intersecting location and determine a depth value for
every pixel in the image. The water tightness of the 3D model
guarantees successful intersection for a ray traced from any
arbitrary direction.

In order to reduce intersection tests and the time needed
to generate depthmaps, we implement two optimizations. The
first one is a kd-tree acceleration structure that drastically
reduces the amount of geometry needed for intersection tests.
By dividing the 3D model into axis aligned bounding boxes,
intersection tests are only performed for polygons located in
the subset of bounding boxes that the ray travels through.
The second one is to cache polygons that have been recently
intersected since these are likely to be intersected again later
in the raytracing. Fig. 5(b) shows the 3D model when viewed
from the database image’s pose while Fig. 5(c) shows an
raytraced depthmap of the same image.

The 3D point cloud resulting from the backpack are also
used to create an approximate floorplan for the building of
interest. The procedure is as follows: As shown in Fig. 3(b), we
find a sparse sampling of points that represent wall locations
using the 2D histogram approach described in [19]. These
samples are essentially projections of geometry scanners onto
the 2D horizontal ground plane. As shown in Fig. 3(c), the
samples are then connected interactively using CAD software
to produce a set of lines which approximate the true layout

Fig. 4. (a) Point cloud generated by backpack. (b) 3D model reconstructed
from point cloud.

of the walls. As a last step, we extract SIFT features from
every database image for later use along the image localization
pipeline [15].

III. IMAGE RETRIEVAL AND POSE ESTIMATION

The next step of our image localization pipeline shown
in Fig. 1(b) is image retrieval, which involves selecting the
best matching image from the image database for a particular
query image. Our indoor image retrieval system loads the SIFT
features of every database image into a single FLANN kd-tree
[16]. Next, we extract SIFT features from the query image and
for each SIFT vector extracted, we lookup its top N neighbors
in the kd-tree. For each closest neighbor found, we assign a
vote to the database image that the closest neighbor feature
vector belongs to. Having repeated this for all the SIFT features
in the query image, the database images are ranked by the
number of matching SIFT features they share with the query
image. We find that a value of 4 for N results in optimal image
retrieval performance.

After tallying the votes, we perform geometric consistency
checks and rerank the scores to filter out mismatched SIFT
features. We solve for the fundamental matrix between the
database and query images and eliminate feature matches
which do not satisfy epipolar constraints [14]. We also remove
SIFT feature matches where the angle of SIFT features differ
by more than 0.2 radians. Because these geometric consistency
checks only eliminate feature matches and decrease the scores
of database images, we only need to partially rerank the
database images. The database image with the highest score



Fig. 5. (a) Original database image. (b) 3D model viewed from pose of
database image. (c) Raytraced depthmap of database image.

after reranking is outputted as the best match to the query
image.

As shown in Fig. 1(c), the last step of our indoor local-
ization pipeline is pose recovery of the query image [17].
Pitch and roll estimation from cell phone sensors are used in
vanishing point analysis to compute yaw of the query image.
Once we estimate complete orientation, SIFT matches are
used to solve a constrained homography problem to recover
translation between query and database images.

IV. EXPERIMENTAL RESULTS

For our experimental setup, we use the ambulatory human
operated backpack of Fig. 2 to scan the interior of Newpark
Mall, a two story shopping center at Fremont, California. To
generate a 3D locally referenced image database, we collect
over 20,000 images with the fish-eye cameras mounted on
the backpack. These 20,000 images are then rectified into
rectilinear images to remove the fish-eye distortion. Since the
images overlap heavily with each other, it is sufficient to
include every sixth image for use in the database. By reducing
the number of images, we are able to speed up image retrieval

by several factors with virtually no loss in accuracy. The 3D
model resulting from the surface reconstruction algorithm in
[18] has a visual resolution of 30 cm. Raytracing this model
generates depth values for all pixels in the image database. We
have found that a relatively coarse resolution is sufficient for
the pose estimation portion of the pipeline.

Our query image data set consists of 83 images taken with
a Samsung Galaxy S3 smartphone. The images are approxi-
mately 5 megapixels in size and are taken using the default
settings of the Android camera application. Furthermore, the
images consist of landscape photos either taken head-on in
front of a store or at a slanted angle of approximately 30
degrees. After downsizing the query images to the same
resolution as the database images, i.e. 1.25 megapixels, we
successfully match 78 out of 83 images to achieve a retrieval
rate of 94%. After detailed analysis of the failure cases, we
have found that two of the incorrectly matched query images
are of a store that does not exist in the image database. This
means the true failure rate of our image retrieval system is 3
out of 80 or less than 4%. As shown in Fig. 6(a), successful
retrieval usually involves matching of store signs present in
both the query and database images. In cases where retrieval
fails, i.e. Fig. 6(b), there are few features on the query image’s
store sign that get matched.

Next, we run the remaining query images with successful
retrieved database images through the pose estimation part of
the pipeline. In order to characterize pose estimation accuracy,
we first manually ground truth the position and pose of each
query image taken. This is done by using the 3D model
representation of the mall and distance measurements recorded
during the query dataset collection. For each query image, we
are able to specify a ground truth yaw and position in the same
coordinate frame as the 3D model and the output of the pose
recovery step.

Fig. 7 summarizes the performance of the pose estimation
stage of our pipeline. As shown in Figs. 7(a) and 7(c), we
are able to localize the position to within sub-meter level of
accuracy for over 50% of the query images. Furthermore, 85%
of the query images are successfully localized to within two
meters of the ground truth position. As shown in Figs. 7(b)
and 7(d), we are able to correctly estimate yaw within 10
degrees of ground truth for roughly 90% of the query images.
As seen in Fig. 8(a), when the location error is less than 1
meter, the SIFT features of corresponding store signs present
in both query and database images are matched together by
the RANSAC homography [17]. Conversely, in less accurate
cases of pose estimation where the location error exceeds
4 meters, the RANSAC homography finds “false matches”
between unrelated elements of the query and database images.
In the example shown by Fig. 8(b), different letters in the signs
of the two images are matched together. In general we find that
images with visually unique signs perform better during pose
estimation than those lacking such features. In Fig. 9, we plot
the estimated and ground truth locations of the query images
onto the shopping center’s 2D floorplan. As seen from this
figure, there is close agreement between the two.

On a 2.3 GHz i5 laptop, our complete pipeline from image
retrieval to pose recovery takes on average 10-12 seconds to
output a solution for a single image. On an Amazon EC2 extra-
large computing instance, the runtime is reduced further to an



Fig. 6. (a) Successful and (b) unsuccessful examples of image retrieval. Red lines show SIFT feature matches.

Fig. 7. Cumulative histogram of (a) location, (b) yaw error. Probability distribution function of (c) location, (d) yaw error.

average of 4.5 seconds per image.

V. CONCLUSION

In this paper, we have presented a complete image based
localization pipeline for indoor environments. Our system is
capable of achieving accuracy matching or exceeding that of
WiFi based localization systems and can determine the pose
of the user as well. For future work, we plan to explore ways
to further optimize the speed and accuracy of our pipeline,
integrate an online tracking algorithm, and replace SIFT with
image descriptors that are more robust to viewpoint variation.
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