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Abstract. Automatic generation of building floor plans is useful in
many emerging applications, including indoor navigation, augmented
and virtual reality, as well as building energy simulation software. These
applications require watertight models with limited complexity. In this
paper, we present an approach that produces 2.5D extruded watertight
models of building interiors from either 2D particle filter grid maps or
full 3D point-clouds captured by mobile mapping systems. Our approach
is to triangulate a 2D sampling of wall positions and separate these tri-
angles into interior and exterior sets. We partition the interior volume of
the building model by rooms, then simplify the model to reduce noise.
Such labels are useful for building energy simulations involving thermal
models, as well as for ensuring geometric accuracy of the resulting 3D
model. We experimentally verify the performance of our proposed ap-
proach on a wide variety of buildings. Our approach is efficient enough
to be used in real-time in conjunction with Simultaneous Localization
and Mapping (SLAM) applications.
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1 Introduction

Indoor building modeling and floor plan generation are useful in many fields such
as architecture and civil engineering. Green buildings and sustainable construc-
tion have increased the use of building energy simulation and analysis software,
requiring building geometry as input. Even though existing energy simulation
tools can accurately model the thermodynamic properties of building interiors,
their performance is hindered by overly complex geometry models [6]. Indoor
models can also be used for positioning in wide-area augmented reality ap-
plications, whereby low-complexity models enable low memory use for mobile
client-side processing.
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In this paper, we present a technique for generating aesthetically pleasing,
minimalist 2.5D models of indoor building environments. Such models are in-
tended to capture the architectural elements of a building such as floors, walls,
and ceilings while ignoring transient objects such as furniture. We generate our
models by first computing a 2D floor-plan of the environment, then using esti-
mated height information to extrude the floor-plan into a 3D building model.

Generating 3D models by extruding 2D floor-plans typically yield clean and
aesthetically pleasing results. Even though such models may not capture the
fine details of the environment, they still offer many advantages. As shown later,
it is possible to generate sizable 2.5D extruded models at real-time speeds, en-
abling human operators to capture and navigate environments thoroughly and
adaptively.

We also propose a technique to partition the interior environment rooms,
yielding secondary features of buildings, such as locations of doorways. Room
labeling is useful for many applications, such as fast rendering of models [8].
Furthermore, since energy simulation engines model heat and air flow within
the building environment, they need accurate partitions of the interior spaces to
represent distinct thermal zones [6].

In addition to exporting room labels, our proposed technique uses the com-
puted labels to further improve the geometry of the model. Specifically, knowl-
edge of room partitions can be exploited to reduce noise in the computed geom-
etry while preserving fine details in doorways. Furthermore, since input height
estimates are often noisy, using room labels to group these heights can provide
substantial error reduction in the resulting extruded 3D meshes.

This paper is organized as follows. In Section 2, we describe related work
to this research. Section 3 describes our proposed algorithm to generate floor
plans from the specified input. In Section 4, we describe our approach to room
labeling. In Section 5, we show how room labeling is used to reduce noise in the
model. Section 6 describes how 2D floor plans are extruded into 2.5D models
with height information. Section 7 demonstrates experimental results on a wide
variety of building models. Lastly, in Section 8 we describe potential future work
in this area.

2 Background

Modeling and navigation of indoor environments is a well-studied field. Due to
cost of full 3D laser range finders, the majority of indoor modeling systems use
2D LiDAR scanners. Examples of such systems include autonomous unmanned
vehicles [18, 2] or systems worn by a human operator [4, 7].

Most simultaneous localization and mapping (SLAM) systems use a horizontally-
oriented 2D LiDAR scanner, which estimates the trajectory of the system, cre-
ating a 2D map of the environment [20]. The constructed 2D grid map is stored
as a set of points in R2 that represent the primary features of the environment,
such as walls and building architecture. Particle filtering approaches to local-
ization typically result in real-time mapping [12, 11] and can therefore benefit
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from a real-time floor plan generation algorithm that delivers a live map of the
environment.

These mapping systems can also use additional scanners to create a dense
3D point-cloud representation of the environment geometry [19, 14], which can
be used to develop full 3D models [3, 13]. Many applications are unable to use
these 3D models due to their complexity and number of elements. For exam-
ple, building energy simulations require watertight meshes that are also highly
simplified in order to perform effectively [6].

To address this issue, a number of simplified building modeling algorithms
have been developed, most of which assume vertical walls, rectified rooms, and
axis-alignment [24]. Under these assumptions, fundamental features of the build-
ing can be identified, while ignoring minor details such as furniture or other
clutter [1]. One of the major limitations of these techniques is that they are
developed only for axis-aligned models. Often, such techniques correctly recon-
struct major rooms while fundamentally changing the topology of minor areas,
such as ignoring doorways, shapes of rooms, or small rooms entirely.

In this paper, we show that simple models can be generated with only 2.5D
information, while preserving connectivity and geometry of building features,
including doorways. Our approach generates a 2D floor plan of the building,
then uses wall height information to generate a 3D extrusion of this floor plan.
Such blueprint-to-model techniques have been well-studied [17, 15], but rely on
the original building blueprints as input. Our technique automatically generates
the floor plan of the building and uses this information to create a 2.5D model
of the environment.

Prior work on automatic floor plan generation use dense 3D point-clouds
as input, and take advantage of the verticality of walls to perform histogram
analysis to sample wall position estimates [16, 21], which are in the same format
as a grid map for particle filtering [10]. In situations where dense 3D point-clouds
are available, we apply similar techniques to convert them to a 2D wall sampling.

A novel contribution of this paper is the use of room labeling to enhance
building models, e.g. for thermal simulations of interior environments [6]. One
motivation for existing work has been to capture line-of-sight information for
fast rendering of building environments [8]. This technique requires axis-aligned
rectilinear building geometry, which often is not a valid assumption. Others
have partitioned building environments into submap segments with the goal
of efficient localization and tracking [2]. This approach is meant to create easily
recognizable subsections of the environment, whereas our proposed room labeling
technique uses geometric features to capture semantic room definitions for both
architectural and building energy simulation applications.

3 Floor Plan Generation

In this section, we present a technique to automatically generate accurate floor
plan models at real-time speeds for indoor building environments. Section 3.1
describes the type of input for our approach, which can be generated from either
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Fig. 1. Example input wall samples of hotel hallways and lobby generated from a
particle filter system. (a) Wall samples of full model; (b) close up of wall in model.

2D mapping systems or dense 3D point-clouds of environments. In Section 3.2,
we discuss the way these input data are used to compute the interior space of
the 2D floor-plan, which defines the resultant building geometry.

3.1 Input Data

The input data used during floor plan generation consist of points in the (x,y)
horizontal plane, which we call wall samples. These points depict locations of
walls or vertical objects in the environment. We assume that interior environ-
ments satisfy “2.5-Dimensional” geometry: all walls are vertically aligned, while
floors and ceilings are perfectly horizontal. In many application scenarios only 2D
scanners operating in one plane are used, so this assumption is needed to extract
3D information about the environment. Many mapping systems use a horizontal
LiDAR scanner to estimate a map of the area as a set of wall sample positions,
while refining estimates for scanner poses. These mobile mapping systems often
have additional sensors capable of estimating floor and ceiling heights at each
pose [4, 18]. The input to our algorithm is a set of 2D wall samples, where each
sample is associated with the scanner pose that observed it, as well as estimates
of the floor and ceiling heights at the wall sample location.

An alternate method of computing wall samples is to subsample a full 3D
point-cloud to a set of representative 2D points [21, 16]. This process cannot
be done in a streaming fashion, but can provide more accurate estimates for
wall positions than a real-time particle filter. Such an approach is useful when
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representing dense, highly complex point clouds with simple geometry. Under the
2.5D assumption of the environment, wall samples can be detected by projecting
3D points onto the horizontal plane. Horizontal areas with a high density of
projected points are likely to correspond to vertical surfaces. Wall samples are
classified by storing these projected points in a quadtree structure with resolution
r. A resolution of 5 cm typically results in sufficient detail in even the most
cluttered environments. Each leaf node in this quadtree contains the 3D points
that are projected onto its r×r area. A vertical histogram is computed using the
original heights of these points. This histogram has bin-size r, and if a sufficient
vertical coverage H is represented by at least ceil(H/r) bins, then the average
(x, y) position of the leaf is considered a wall sample. The value of H may
vary depending on application, but a length of 2 meters works well to capture
permanent wall features while ignoring furniture and other interior clutter.

If the wall samples are generated from point-clouds, then a histogram ap-
proach can be used to separate the point-cloud by levels [21]. Fig. 2a shows
an example point-cloud, colored by height, which contains multiple levels. By
computing a histogram along the vertical-axis of the point-cloud, it is possible
to find heights with high point density, which indicates the presence of a large
horizontal surface. An example of this process is shown in Fig. 2b, where peaks
in the histogram correspond to the floors and ceilings of each scanned level in
the building. Points scanned from above, in a downward direction, are used to
populate a histogram to estimate the position of each floor, and the histogram
used to estimate the position of each ceiling is populated by points scanned from
below. The local maxima of these two histograms show locations of likely can-
didates for floor and ceiling positions, which are used to estimate the number
of scanned levels and the vertical extent of each level. Fig. 2c shows the final
extruded mesh with all three scanned levels.

The result is a set of wall samples P ⊆ R2, where each wall sample p ∈ P is
represented by its 2D position, the minimum and maximum height values of the
points that sample represents, and the poses of the scanners that observed the
sample location. As we discuss later, these scanner poses provide crucial line-of-
sight information that facilitate floor plan reconstruction. An example of such
input for a hotel hallway is shown in Fig. 1. As shown, even though the walls are
well sampled, noise in the localization estimate causes noisy wall samples with
outliers.

3.2 Triangulation

We generate a floor plan by partitioning space into interior and exterior domains.
The interior represents all open space in the environment, such as rooms and
hallways, while the exterior represents all space outside of the building, space
occupied by solid objects, or space that is unobservable. Once this partitioning
is completed, as described below, the boundary lines between the interior and
exterior are used to represent the exported walls of the floor plan.

The input samples are used to define a volumetric representation by gen-
erating a Delaunay Triangulation on the plane. Each triangle is labeled either
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Fig. 2. An example point-cloud partitioning by height: (a) the input point-cloud, show-
ing geometry for three levels; (b) the vertical histogram showing estimates of each
building level height; (c) the produced mesh of this building scan.

interior or exterior by analyzing the line-of-sight information of each wall sample.
Initially, all triangles are considered exterior. Each input wall sample, p ∈ P , is
viewed by a set of scanner positions, Sp ⊆ R2. For every scanner position s ∈ Sp,
the line segment (s, p) denotes the line-of-sight occurring from the scanner to
the scanned point during data collection. No solid object can possibly intersect
this line, since otherwise the scan would have been occluded. Thus, all triangles
intersected by the line segment (s, p) are relabeled to be interior.

In order to prevent fine details from being removed, we check for occlusions
when carving each line segment (s, p). If another wall sample p′ is located in
between the positions of s and p, then the line segment is truncated to (s, p′).
Thus, no features captured by wall samples are ever fully carved away, preserving
environment details. This process carves away the interior triangles with each
captured scan. Since these scans are captured on a mobile scanner, the scanner
poses are ordered in time. In order for the system to traverse the environment,
the line segment between adjacent scanner poses must also intersect only interior
space. In addition to carving via scanner-to-scan lines, the same carving process
is performed with scanner-to-scanner line segments.

Fig. 3 demonstrates an example of this process. Fig. 3a shows the input wall
samples, in blue, as well as the path of the mobile mapping system, in green.
These points are triangulated, as shown in Fig. 3b. The line-of-sight information
is analyzed from each pose of the system, demonstrated by the laser scans from
each pose to its observed wall samples in Fig. 3c. The subset of triangles that
are intersected by these laser scans are considered interior. The interior triangles
are shown in pink in Fig. 3d, denoting the interior volume of the reconstructed



Floor Plan Generation from LiDAR Scans 7

Fig. 3. Example of carving process to find interior triangles: (a) wall samples (in blue)
with path of scanner (in green); (b) Delaunay Triangulation of wall samples; (c) laser
scans from each pose (in red); (d) triangles that intersect with laser scans (in pink),
used as interior triangles, with building model border (in blue).

building model. The border of this building model is shown in blue, denoting
the estimated walls of the floor plan.

4 Room Labeling

Once the volume has been partitioned into interior and exterior domains, the
boundary between these domains can be exported as a valid floor plan of the
environment. Keeping volumetric information can also yield useful information,
such as a partitioning of the interior into separate rooms.

We define a room to be a connected subset of the interior triangles in the
building model. Ideally, a room is a large open space with small shared bound-
aries to the rest of the model. Detected rooms should match with real-world
architecture, where separations between labeled rooms are located at doorways
in the building. Since doors are often difficult to detect, or not even present,
there is no strict mathematical definition for a room, so this labeling is heuristic
in nature.

We model room labeling as a graph-cut problem. First, a rough estimate
for the number of rooms and a seed triangle for each room is computed. A
seed triangle is representative of a room, where every room to be modeled has
one seed triangle. These seeds are used to partition the remainder of interior
triangles into rooms. This process typically over-estimates the number of rooms,
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Fig. 4. Example room seed partitioning: (a) interior triangulation; (b) the room seed
triangles, and their corresponding circumcircles; (c) room labels propagated to all other
triangles.

so prior knowledge of architectural compliance standards is used to evaluate
each estimated room geometry. Using this analysis, the number of ill-formed
rooms is reduced, providing an update on the original seed points. This process
is repeated until the set of room seeds converges.

4.1 Forming Room Seeds

We use the Delaunay property of the triangulation to identify likely seed triangle
locations for room labels. If we assume that the input wall samples represent a
dense sampling of the building geometry, this property implies that the circum-
circles of none of the interior triangles intersect the boundary walls of the carved
floor plan, forcing these circles to represent only interior area. This make-up al-
lows each triangle’s circumradius to provide an estimate of the local feature size
at its location on the floor plan boundary polygon. Given the example interior
triangulation shown in Fig. 4a, the highlighted triangles in Fig. 4b show the
chosen seed locations.

Triangles with larger circumradii are likely to be more representative of their
rooms than those with smaller circumradii. We form the initial set of room seeds
by finding all triangles whose circumcircles are local maxima. Specifically, given
the set of interior triangles T , each triangle t ∈ T has circumcircle ct, which is
tested against every other circumcircle in T that is intersected by ct. If ct has
the largest radius of any intersecting circumcircle, then t is considered a seed
for the room labeling. This process selects the largest triangles that encompass
the space of rooms as the seeds for room labeling. Fig. 4b shows example seed
triangles and their corresponding circumcircles. The result is an estimate of the
number of rooms and a rough location for each room.

4.2 Partitioning Room Labels

Let K be the number of room seeds found, with the seed triangles denoted as
t1, t2, ..., tK . We wish to partition all triangles in T into K rooms. This step can
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Fig. 5. Room labeling refinement example: (a) initial room labels; (b) converged room
labels

be performed as a graph-cut on the dual of the triangulation. Specifically, each
triangle t ∈ T is a node in the graph, and the edge weight between two abutting
triangles is the length of their shared side. Performing a min-cut on this graph
partitions rooms to minimize inter-room boundary length. In other words, rooms
are defined to minimize the size of doors. This process propagates the room labels
to every triangle, and the boundaries between rooms are composed of only the
smallest edges in the triangulation T . The result of this process is shown in
Fig. 4c.

4.3 Refining Rooms

Room labels partition T into a set of rooms R = {R1, R2, ..., RK}, where each
room Ri contains a disjoint subset of T and has seed triangle ti. The initial room
seeds over-estimate the number of rooms, since a room may have multiple local
maxima. This case is especially true for long hallways, where the assumption that
one triangle dominates the area of the room is invalid. An example is shown in
Fig. 4c, where two lower rooms, shown in green and purple, are properly labeled,
but their adjoining hallway is broken into three subsections. The solution is to
selectively remove room seeds and redefine the partition.

A room is considered a candidate for merging if it shares a large perime-
ter with another room. Ideally, two rooms sharing a border too large to be a
door should be considered the same room. By Americans with Disabilities Act
Compliance Standards, a swinging door cannot exceed 48 inches in width [23].
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Accounting for the possibility of double-doors, we use a threshold of 2.44 meters,
or 96 inches, when considering boundaries between rooms. If two rooms share
a border greater than this threshold, then the seed triangle with the smaller
circumradius is discarded. This process reduces the value of K, the number of
rooms, while keeping the interior triangulation T unchanged. With a reduced
set of room seeds, existing room labels are discarded and the process of room
partitioning is repeated. This iteration repeats until the room labeling converges.

Another way room labels are refined is by comparing the path of the mobile
mapping system to the current room labeling for each iteration. The mobile
scanning system does not necessarily traverse every room, and may only take
superficial scans of room geometry passing by a room’s open doorway. Since the
room is not actually entered, the model is unlikely to capture sufficient geometry,
and so only a small handful of wall samples are acquired for such a room. It is
desirable to remove this poorly scanned area from the model rather than keeping
it as part of the output. After each round of room partitioning, if none of the
triangles in a room Ri are intersected by the scanner’s path, then we infer that
room has not been entered. The elements of Ri are removed from the interior
triangulation T . Since the topology of the building model is changed, the set
of room seeds is recomputed in this event and room labeling is restarted. This
process will also remove areas that are falsely identified as rooms, such as ghost
geometry generated by windows and reflective surfaces, which cause rooms to
be replicated outside the actual model.

Fig. 5 shows an example of the room refinement process for the hallways and
classrooms in an academic building. Fig. 5a shows the initial room seeds that
were found based on circumcircle analysis of Section 4.1. The hallways of this
building are represented by several room labels, but after room label refinement
as shown in Fig. 5b, the hallways are appropriately classified. Additionally, rooms
that are insufficiently scanned and represented with triangulation artifacts are
removed from the model in the manner described above.

5 Simplification

The interior building model is represented as a triangulation of wall samples,
which densely represent the building geometry. In many applications, it is useful
to reduce the complexity of this representation, so that each wall is represented
by a single line segment. This step is often desirable in order to attenuate noise
in the input wall samples or to classify the walls of a room for application-specific
purposes. The goal is to simplify the wall geometry while preserving the general
shape and features of the building model.

We opt to simplify walls using a variant of QEM [9]. Since this mesh is in the
plane, only vertices incident to the model boundary are considered for simplifi-
cation. The error matrix Qv of each boundary vertex v is used to compute the
sum of squared displacement error from each adjoining line along the boundary
polygon. Since error is measured via distance away from a line in 2D, each Qv

has size 3× 3, and is defined as:



Floor Plan Generation from LiDAR Scans 11

Qv =
∑

l∈lines(v)

El (1)

where El is defined from the line equation ax+ by + c = 0, with a2 + b2 = 1:

El =

a2 ab ac
ab b2 bc
ac bc c2

 (2)

The simplification of the boundary proceeds in a similar manner to QEM, but
if a wall vertex v is contained in multiple rooms or if it is connected by an edge
to a vertex that is contained in multiple rooms, then it is not simplified. This
constraint is used to preserve the fine details of doorways between rooms, while
freely simplifying walls that are fully contained within one room. Wall edges
are iteratively simplified until no simplification produces error of less than the
original wall sampling resolution, r. Thus, walls are simplified while preserving
any geometry features of the building interior.

Since we are interested in preserving the 2D triangulation T of the build-
ing model, in addition to the boundary polygon, every edge simplification is
performed by collapsing an interior triangle. This computation simplifies the
boundary polygon of the model while still preserving the room labeling of the
model’s volume. These triangle collapses do not preserve the Delaunay property
of the triangulation, but do preserve the boundaries between room volumes,
which is more desirable in the output.

6 Height Extrusion

As mentioned in Section 3.1, each input wall sample also references the vertical
extent for the observed scans at that location. This information can be used to
convert the labeled 2D interior building model to a 2.5D extruded model, by
using the minimum and maximum height values for each scan as an estimate of
the floor and ceiling heights, respectively.

Since these wall samples are collected using 2D planar scanners in an envi-
ronment containing clutter, the minimum and maximum heights associated with
each point are noisy. Fig. 6a shows an example room with these initial heights.
To produce aesthetically-pleasing models, each room uses a single floor height
and a single ceiling height. This assumption is reasonable since the goal of this
processing is to produce a simplified building mesh. This step demonstrates the
utility of room labeling to modeling. The height range for each room is computed
from the median floor and ceiling height values of that room’s vertices. An ex-
ample is shown in Fig. 6b and the corresponding result from the simplification
process from Section 5 is demonstrated in Fig. 6c.

The 2D triangulation of a room is then used to create the floor and ceiling
mesh for that room, with the boundary edges of the triangulation extruded to
create rectangular vertical wall segments. The result is a watertight 3D mesh of
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Fig. 6. Example of creating a 3D extruded mesh from 2D wall samples: (a) walls of
generated floor plan with estimated height ranges; (b) floor and ceiling heights are
grouped by room; (c) simplification performed on walls; (d) floor and ceiling triangles
added to create a watertight mesh.

the building, capturing the permanent geometry in an efficient number of trian-
gles. Fig. 6d shows an example of this watertight extruded geometry, including
the effects of wall boundary simplification on the resulting extruded mesh.

7 Results

Our approach works well on a variety of test cases, spanning several model types
including offices, hotels, and university buildings. For the largest models, total
processing time to compute an extruded 3D model from 2D wall samples is under
10 seconds. Most of this time is spent on carving interior triangles, which can
be performed real-time in a streaming manner during data acquisition, which
typically lasts several minutes.

Our 2.5D approach produces simplified models when compared to surface
reconstruction techniques that preserve fine detail with more complex output.
Specifically, our method omits interior clutter such as furniture since it uses wall
samples as input. Fig. 7 compares the models resulting from our 2.5D method
with that of an existing 3D building modeling technique [22] for the hotel hall-
ways shown in Fig. 1. The two methods result in 2,944 triangles and 4.1 millions
triangles, respectively.

Since these models were generated with a system that captures imagery in
addition to laser range points, these models can also be texture-mapped with



Floor Plan Generation from LiDAR Scans 13

(a) (b)

Fig. 7. Comparison of models from (a) our approach with (b) existing approach [22].

(a) (b)

Fig. 8. Interior view of 3D extruded reconstructed model: (a) without and (b) with
texture-mapping [5].

the scenery of the environment [5]. Fig. 8 depicts the hallways of an academic
building with and without texturing.

Next, we show sample models resulting from our proposed method in mul-
tiple environments. For all the models shown in this paper, the scale is in units
of meters, and the resolution is 5 cm. Fig. 9 shows a small test model of an
apartment office complex and Fig. 10 denotes a hotel lobby, hallways, and side
rooms. The vast majority of this model is labeled as one room, consisting of
the hallways of the building. Since no part of these hallways are separated by
doors, this result is desirable. This model is also the largest example output,
covering over 260 meters of hallways. An interior of the 3D extruded model for
this dataset is shown in Fig. 7a. Fig. 11 represents an academic research lab, in-
cluding conference rooms and student cubicles. The upper portion of the center
room, shown in blue, is a kitchenette area, with a counter-top. Since the counter
was not sufficiently captured by the wall samples, it is not represented in the
2.5D extrusion of the model. The room in the upper-left of this figure contains
student cubicles. While the cubicle walls were scanned and some appear in the
wall sampling, they also do not meet our height threshold and are not fully
represented in the final floorplan.
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(a) (b) (c)

Fig. 9. Apartment complex office: (a) Input represented by 3,462 wall samples; (b)
generates floor plan with 5 rooms; (c) extruded 3D mesh represented with 512 triangles.
Total processing time required is 1.2 seconds.

8 Conclusion

We demonstrate an efficient approach to automatically generate floor plans of
building interiors at real-time speeds. Classifying and labeling the rooms within
each generated floor plan allows for simplification schemes that can preserve
fine details at doorways. These room labels allow for accurate 2.5D extrusion
from noisy floor and ceiling height estimates of the input points. The result-
ing model is suitable for visualization, simulation, and navigation applications.
Current limitations of this algorithm include the verticality assumption made
about observed building features. If the horizontal cross-section of an environ-
ment changes dramatically between different heights, the modeling techniques
presented in this paper does not accurately portray the actual geometry. Such
limitations could be overcome by observing more information about each wall
sample than just (x, y) position and height ranges. If 3D normal estimates could
be made about surfaces, this information may allow better filtering of outlier
wall samples, or to infer building geometry that was poorly scanned.
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