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Motivation: Types of Models

3

University of California, BerkeleyEECS

Photograph
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2.5D Simple  Model
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3D Complex Model
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2D Floor Plan
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You Are Here

2D Floor Plan
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2.5D Model 3D Model
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 Segmenting Furniture
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 Segmenting Furniture
 Improving Floor Plan Accuracy

meters meters
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 Segmenting Furniture
 Improving Floor Plan Accuracy
 Removing Modeling Artifacts
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Hardware
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Hardware
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2D Laser Scanner
(horizontal)

2D Laser Scanners
(vertical)

Cameras

Inertial Measurement Unit (IMU)

Data Storage Computer

Batteries
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[54] J. Kua, N. Corso, and A. Zakhor, “Automatic loop closure detection using multiple
cameras for 3d indoor localization,” IS&T/SPIE Electronic Imaging, pp. 82 960V–
82 960V, January 2012.

[55] N. Corso and A. Zakhor, "Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System,"
Remote Sensing 2013, vol. 5, no. 12, pp. 6611-6646

Side View

Top View

Localization 3D Path



Point Cloud Scans
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Floor Plan Techniques

21

University of California, BerkeleyEECS

[57] C. Weiss and A. Zell, “Automatic generation of indoor vr models by a mobile robot with a laser range 
finder and a color camera,” Autonome Mobile Systeme 2005, pp. 107–113, 2006.

[44] A. Adan and D. Huber, “3d reconstruction of interior wall surfaces under occlusion
and clutter,” 3DIMPVT, pp. 275–281, May 2011.

[56] B. Okorn, X. Xiong, B. Akinci, and D. Huber, “Toward automated modeling of floor plans,” 3DPVT, 2009.

3D Point Cloud
2D Floor Plan (not watertight)



Floor Plan Techniques
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[71] S. Oesau, F. Lagarge, and P. Alliez, “Indoor scene reconstruction using primitive driven
space partitioning and graph-cut,” Eurographics Workshop on Urban Data Modelling
and Visualization, 2013.

[70] J. Xiao and Y. Furukawa, “Reconstructing the world’s museums,” EECV 2012 Lectures
in Computer Science, vol. 7572, pp. 668–681, 2012

[68] R. Cabral and Y. Furukawa, “Piecewise planar and compact floorplan reconstruction
from images,” Computer Vision and Pattern Recognition (CVPR), pp. 628–635, 2014.

[67] C. Mura, O. Mattausch, A. J. Villanueva, E. Gobbetti, and R. Pajarola, “Automatic
room detection and reconstruction in cluttered indoor environments with complex
room layouts,” Computers and Graphics, vol. 44, pp. 20–32, November 2014.

Watertight, extruded floor plans



Floor Plan Techniques
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Goals:

Watertight
Simplified
Scalable
Minimal Assumptions



Our Floor Plan Technique
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model

Full 3D Point Cloud

2.5D Model

2D Floor Plan

[62] E. Turner and A. Zakhor, “Floor plan generation and room labeling of indoor environ-
ments from laser range data,” International Conference on Computer Graphics Theory
and Applications, no. 9, January 2014.
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model

Full 3D Point Cloud



Our Floor Plan Technique
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model meters
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Our Floor Plan Technique
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model

Rooms merged 
and refined



Our Floor Plan Technique
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model

10,037 triangles  →  938 triangles



Our Floor Plan Technique
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model

Interior view



Our Floor Plan Technique
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Level Split

Estimate Walls

Define Interior Area

Partition Rooms

Simplify

Extrude 2.5D Model

Simplified Mesh for All Building Levels



Limitations
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Texture-mapped via [91] P. Cheng, M. Anderson, S. He, and A. Zakhor, “Texture mapping 3d planar models of
indoor environments with noisy camera poses,” SPIE Electronic Imaging Conference,
February 2013.
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3D Modeling Techniques
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[5] C. Holenstein, R. Zlot, and M. Bosse, “Watertight surface reconstruction of caves from
3d laser data,” IEEE/RSJ International Conference on Intelligent Robots and Systems,
September 2011.

[45] S. A. A. Shukor, K. W. Young, and E. J. Rushforth, “3d modeling of indoor surfaces
with occlusion and clutter,” International Conference on Mechatronics, pp. 282–287,
April 2011

[36] A. Chauve, P. Labatut, and J. Pons, “Robust piecewise-planar 3d reconstruction and
completion from large-scale unstructured point data,” CVPR, 2010.



3D Modeling Techniques
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[76] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface map-
ping and tracking,” Mixed and Augmented Reality (ISMAR), pp. 127–136, 2011.

[77] M. Kaess, M. Fallon, H. Johannsson, and J. J. Leonard, “Kintinuous: Spatially ex-
tended kinectfusion,” CSAIL Technical Reports, July 2012.

Image taken from:

[74] A. Karpathy, S. Miller, and L. Fei-Fei, “Object discovery in 3d scenes via shape analy-
sis,” IEEE International Conference on Robotics and Automation, pp. 2088–2095, May
2013.



Our 3D Carving Modeling
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[92] E. Turner and A. Zakhor, “Watertight planar surface meshing of indoor point-clouds
with voxel carving,” 3DV, June 2013.

E. Turner and A. Zakhor, “Automatic Indoor 3D Surface Reconstruction with Segmented Building and
Object Elements”, to be submitted to 3DV 2015, October 2015

Carve Environment Volume

Generate Mesh on Boundary

Triangulated Mesh

Probabilistically Model Scans

Raw Scans and Path

Octree Representation of Scanned Volume



Scan Carving
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 Path of Scanner

LiDAR scans
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Carve Environment Volume

Generate Mesh on Boundary

Triangulated Mesh

Probabilistically Model Scans

Raw Scans and Path



Scan Carving
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Probability of a Location Being Interior



Scan Carving

 Trace path of laser through space
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 Path of 
Scanner

LiDAR scans
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Scan Carving

 Perform carving with “wedges”
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Original Scan Rays

Interpolated Path



Our 3D Carving Modeling
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Carve Environment Volume

Generate Mesh on Boundary

Triangulated Mesh

Probabilistically Model Scans

Raw Scans and Path



Scan Carving

 Intersect against octree nodes
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Octree nodeScan Wedge



Generated Octree Boundary
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Reference Photo



Our 3D Carving Modeling
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Carve Environment Volume

Generate Mesh on Boundary

Triangulated Mesh

Probabilistically Model Scans

Raw Scans and Path



Refining Octree Boundary
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Refining Octree Boundary
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Refining Octree Boundary
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Meshed With Dual Contouring Variant
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Reference Photo

Vertices positioned at isosurface
offset of each octree node



Meshed With Dual Contouring Variant
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 Dense Meshing

 Preserves noise on large surfaces



Meshed With Planar Region Fitting
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  Dense Meshing                Planar Regions

Comparison of Mesh Types
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Mesh, colored by region

Close up of hotel 
hallway

Viewing triangulation 
and planar regions Point-cloud
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Combining Modeling Types
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2.5D Model Building Volume

Object Volume

Mesh



Prior Furniture 
Segmentation Techniques
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[72] L. Nan, K. Xie, and A. Sharf, “A search-classify approach for cluttered indoor scene
understanding,” ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH
Asia, vol. 31, no. 137, November 2012.

[73] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas, “Acquiring 3d indoor environ-
ments with variability and repetition,” ACM Transactions on Graphics, vol. 31, no. 6,
November 2012.



Prior Furniture 
Segmentation Techniques
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[74] A. Karpathy, S. Miller, and L. Fei-Fei, “Object discovery in 3d scenes via shape analy-
sis,” IEEE International Conference on Robotics and Automation, pp. 2088–2095, May
2013.

[75] O. Mattausch, D. Panozzo, C. Mura, O. Sorkine-Hornug, and R. Pajarola, “Object de-
tection and classification from large-scale cluttered indoor scans,” Computer Graphics
Forum, vol. 33, no. 2, pp. 11–21, 2014.

Point Cloud Classified Objects

file:///home/elturner/Documents/research/reports/phd_thesis/presentation/%2Fvids%2Fmeshlab%20walmart%202013-06-17%2009-00-02-88.avi


Improving Floor Plans
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Original Octree



Improving Floor Plans
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Original 2.5D Extruded Model



Improving Floor Plans
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Initial Set Difference



Making Aligned Floor Plans
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 Fit planar regions to octree boundary
 Filter out small regions
 Hole filling
 Wall samples



Making Aligned Floor Plans
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 Fit planar regions to octree boundary
 Filter out small regions
 Hole filling
 Wall samples



Making Aligned Floor Plans
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 Fit planar regions to octree boundary
 Filter out small regions
 Hole filling
 Wall samples

Edge position based
on floor/ceiling planar regions



Making Aligned Floor Plans
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 Fit planar regions to octree boundary
 Filter out small regions
 Hole filling
 Wall samples

Original Wall Samples New Wall Samples

meters meters



Making Aligned Floor Plans
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Original Floor Plan New Floor Plan

meters meters



Making Aligned Floor Plans
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Original Floor Plan New Floor Plan

meters meters

Robust to clutter Robust to clutter

 Aligned to octree geometry
 Less affected by clutter
 Aesthetically cleaner



Making Aligned Floor Plans
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Using Point Cloud

Using Octree



Improving Floor Plans
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Initial Set Difference



Improving Floor Plans
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Aligned Set Difference



Improving Floor Plans
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Refined Furniture Geometry



Combining Modeling Types
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Octree

2.5D Model Building Volume (Low-Res)

Object Volume (High-Res)

Mesh



Final Mesh
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Final Mesh
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Just the room



Final Mesh
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Just the furniture



Final Mesh
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Hybrid 
Operating 
Room Table



Final Mesh
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Final Mesh: Classroom
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Room Scan Time: 34 seconds



Final Mesh: Classroom
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Room Scan Time: 34 seconds



Final Mesh: Classroom
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Room Scan Time: 34 seconds
Floor Scan Time: 25 minutes



Conclusion
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Thank You
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file:///home/elturner/Documents/research/reports/phd_thesis/presentation/%2Fvids%2FhybridOR%2Fhybrid_objects_triangles.avi
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