Ph.D. Dissertation Talk

3D Modeling of Interior Building Environments and Objects from Noisy Sensor Suites

May 1, 2015

Eric Turner Advisor: Avideh Zakhor

Outline

- Motivation
- Hardware and Preprocessing
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models
- Combining Modeling Techniques

Photograph

3D Complex Model

2D Floor Plan

Combining Models

2.5D Model

3D Model

Combining Models

Segmenting Furniture

EECS

Combining Models

- Segmenting Furniture
- Improving Floor Plan Accuracy

EECS

Combining Models

- Segmenting Furniture
- Improving Floor Plan Accuracy
- Removing Modeling Artifacts

Outline

- Motivation
- Hardware and Preprocessing
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models
- Combining Modeling Techniques

Hardware

Hardware

2D Laser Scanner (horizontal)	
2D Laser Scanners (vertical)	
Cameras	
Inertial Measurement Unit (IMU)	
Data Storage Computer	
Batteries	

Localization

[54] J. Kua, N. Corso, and A. Zakhor, "Automatic loop closure detection using multiple cameras for 3d indoor localization," IS&T/SPIE Electronic Imaging, pp. 82 960V–82 960V, January 2012.

[55] N. Corso and A. Zakhor, "Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System," Remote Sensing 2013, vol. 5, no. 12, pp. 6611-6646

Point Cloud Scans

Coloring Point Clouds

Outline

- Motivation
- Hardware and Preprocessing
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models
- Combining Modeling Techniques

Outline

- Motivation
- Hardware and Preprocessing
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models
- Combining Modeling Techniques

Floor Plan Techniques

[57] C. Weiss and A. Zell, "Automatic generation of indoor vr models by a mobile robot with a laser range finder and a color camera," Autonome Mobile Systeme 2005, pp. 107–113, 2006.

[44] A. Adan and D. Huber, "3d reconstruction of interior wall surfaces under occlusion and clutter," 3DIMPVT, pp. 275–281, May 2011.

[56] B. Okorn, X. Xiong, B. Akinci, and D. Huber, "Toward automated modeling of floor plans," 3DPVT, 2009.

Floor Plan Techniques

[71] S. Oesau, F. Lagarge, and P. Alliez, "Indoor scene reconstruction using primitive driven space partitioning and graph-cut," Eurographics Workshop on Urban Data Modelling and Visualization, 2013.

[70] J. Xiao and Y. Furukawa, "Reconstructing the world's museums," EECV 2012 Lectures in Computer Science, vol. 7572, pp. 668–681, 2012

[68] R. Cabral and Y. Furukawa, "Piecewise planar and compact floorplan reconstruction from images," Computer Vision and Pattern Recognition (CVPR), pp. 628–635, 2014.

[67] C. Mura, O. Mattausch, A. J. Villanueva, E. Gobbetti, and R. Pajarola, "Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts," Computers and Graphics, vol. 44, pp. 20–32, November 2014.

Watertight, extruded floor plans

Floor Plan Techniques

Goals:

- Watertight
- Simplified
- Scalable
- Minimal Assumptions

Our Floor Plan Technique

[62] E. Turner and A. Zakhor, "Floor plan generation and room labeling of indoor environments from laser range data," International Conference on Computer Graphics Theory and Applications, no. 9, January 2014.

Our Floor Plan Technique

Our Floor Plan Technique Level Split **Estimate Walls Define Interior Area** Partition Rooms Simplify Extrude 2.5D Model 28

30

Our Floor Plan Technique

Rooms merged and refined

Our Floor Plan Technique

Extrude 2.5D Model

Our Floor Plan Technique

Limitations

Texture-mapped via [91] P. Cheng, M. Anderson, S. He, and A. Zakhor, "Texture mapping 3d planar models of indoor environments with noisy camera poses," SPIE Electronic Imaging Conference, 35 February 2013.

Outline

- Motivation
- Hardware and Preprocessing
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models
- Combining Modeling Techniques

3D Modeling Techniques

[5] C. Holenstein, R. Zlot, and M. Bosse, "Watertight surface reconstruction of caves from 3d laser data," IEEE/RSJ International Conference on Intelligent Robots and Systems,

September 2011.

(c) Industrial building

(d) Photo of the same area

[45] S. A. A. Shukor, K. W. Young, and E. J. Rushforth, "3d modeling of indoor surfaces with occlusion and clutter," International Conference on Mechatronics, pp. 282–287, April 2011

[36] A. Chauve, P. Labatut, and J. Pons, "Robust piecewise-planar 3d reconstruction and completion from large-scale unstructured point data," CVPR, 2010.

3D Modeling Techniques

[76] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, "Kinectfusion: Real-time dense surface mapping and tracking," Mixed and Augmented Reality (ISMAR), pp. 127–136, 2011.

[77] M. Kaess, M. Fallon, H. Johannsson, and J. J. Leonard, "Kintinuous: Spatially extended kinectfusion," CSAIL Technical Reports, July 2012.

Image taken from:

[74] A. Karpathy, S. Miller, and L. Fei-Fei, "Object discovery in 3d scenes via shape analysis," IEEE International Conference on Robotics and Automation, pp. 2088–2095, May 2013.

Our 3D Carving Modeling

[92] E. Turner and A. Zakhor, "Watertight planar surface meshing of indoor point-clouds with voxel carving," 3DV, June 2013.

E. Turner and A. Zakhor, "Automatic Indoor 3D Surface Reconstruction with Segmented Building and Object Elements", to be submitted to 3DV 2015, October 2015

ECS

Trace path of laser through space

Perform carving with "wedges"

Our 3D Carving Modeling

Intersect against octree nodes

Generated Octree Boundary

Our 3D Carving Modeling

Refining Octree Boundary

Refining Octree Boundary

Refining Octree Boundary

Meshed With Dual Contouring Variant

Meshed With Dual Contouring Variant

Meshed With Planar Region Fitting

Comparison of Mesh Types

Dense Meshing

Planar Regions

University of California, Berkeley

Close up of hotel hallway

Viewing triangulation and planar regions

Outline

- Motivation
- Hardware and Preprocessing
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models
- Combining Modeling Techniques

Combining Modeling Types

Prior Furniture Segmentation Techniques

[72] L. Nan, K. Xie, and A. Sharf, "A search-classify approach for cluttered indoor scene understanding," ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH Asia, vol. 31, no. 137, November 2012.

[73] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas, "Acquiring 3d indoor environments with variability and repetition," ACM Transactions on Graphics, vol. 31, no. 6, November 2012.

Prior Furniture Segmentation Techniques

[74] A. Karpathy, S. Miller, and L. Fei-Fei, "Object discovery in 3d scenes via shape analysis," IEEE International Conference on Robotics and Automation, pp. 2088–2095, May 2013.

[75] O. Mattausch, D. Panozzo, C. Mura, O. Sorkine-Hornug, and R. Pajarola, "Object detection and classification from large-scale cluttered indoor scans," Computer Graphics Forum, vol. 33, no. 2, pp. 11–21, 2014.

Point Cloud

Classified Objects

Original 2.5D Extruded Model

65

- Fit planar regions to octree boundary
- Filter out small regions
- Hole filling
- Wall samples

- Fit planar regions to octree boundary
- Filter out small regions
- Hole filling
- Wall samples

Eit planar regions to octree boundary	
 Edge position based on floor/ceiling planar regions Filter out small regions Hole filling Wall samples 	67

- Fit planar regions to octree boundary
- Filter out small regions
- Hole filling
- Wall samples

- Aligned to octree geometry
- Less affected by clutter
- Aesthetically cleaner

71

EECS

Making Aligned Floor Plans

Using Point Cloud

Using Octree

Refined Furniture Geometry

Combining Modeling Types

Final Mesh

University of California, Berkeley

Final Mesh

Just the room

Final Mesh

Just the furniture

Final Mesh

Hybrid Operating Room Table

Final Mesh

Final Mesh: Classroom

Final Mesh: Classroom

EECS

Final Mesh: Classroom

Conclusion

- Custom Hardware
- Modeling Techniques
 - 2D Floor Plans
 - 2.5D Simplified Models
 - 3D Complex Models

Combining Modeling Techniques

Thank You